These lecture notes (.pdf ) are the result of four years of teaching at the Higher School of Economics (2014-2018), and in 2018, at the Yandex School of Data Analysis. They are based on various textbooks, notes from colleagues, mini-courses, and personal notes, whose references can be found at the end of each section (exception for the Causal Inference section, which I started writing after 2018). The aim is to give the reader an overview of the theoretical fundamentals underpinning modern techniques in machine learning. A brief but formal account of probability theory and mathematical statistics is first given, in order to appreciate in greater details the mathematics involved in modern algorithmic techniques. When relevant, we provide some additional exercises (pbs).


Mathematical Statistics
1. Parametric Estimation // .pdf
2. Maximum Likelihood Estimation // .pdf
3. Hypothesis Testing // .pdf
4. Goodness-of-Fit Testing // .pdf
5. Bootstrap // .pdf
6. Density Estimation // .pdf
7. Bayesian Statistics // .pdf
8. Monte Carlo Integration // .pdf
9. Markov Chain Monte Carlo //

Supervised Learning
2. K-Nearest Neighbors // .pdf
3. Linear Regression // .pdf pbs
4. Ridge Regression and Lasso // .pdf pbs
5. Splines and Smoothing Splines // .pdf pbs
6. Linear Classification // .pdf pbs
7. Model Selection // .pdf pbs
8. Bayesian Linear Models // .pdf
9. Vapnik-Chervonenkis Theory // .pdf pbs
10. Trees, Bagging and Random Forests // .pdf pbs
11. Convex Relaxation // .pdf pbs
13. Support Vector Machine // .pdf pbs
14. Reproducing Kernel Hilbert Spaces // .pdf pbs
15. Gradient Descent Algorithms // .pdf
16. Neural Networks // .pdf pbs
17. Recommender Systems // .pdf

Sequential Data
1. Online Learning // .pdf
2. Reinforcement Learning // .pdf
3. Hidden Markov Models // .pdf
4. Kalman Filtering // .pdf
5. ARIMA Processes // .pdf

Causal Inference
1. Randomized Control Trials // .pdf
2. Unconfoundedness // .pdf
3. Stratification and Rerandomization // .pdf
4. Heterogeneous Treatment Effects // .pdf
5. Treatment Effects Under Interference // .pdf
6. Panel Data Methods // .pdf
7. Synthetic Controls // .pdf
8. Appendix: Elements of Causal Inference // .pdf