SL: Boosting

Problem 0.
Consider the problem of binary classification, with response variable y € {—1,1}, and exponential

loss U(y, f(x)) = exp(—yf(z)).

(i) The AdaBoost algorithm minimises the empirical (exponential) loss in a stage-wise manner.
Put f(m=1(z) = ZZ:ll Brfr(x), where fi is the k-th weak learner, and [ a scaling factor.
At iteration m, we solve

(B f) = argmmin > exp {—ys(f" V() + 6f ()} -
=1

Show that f,,, can be taken as a tree minimising a weighed error rate.
(ii) Derive the optimal solution f3,,.

(iii) Deduce from (i) and (ii) the AdaBoost algorithm.

Problem 1. Boosted tree model
The boosted tree model

(@) = T(;0,)

is a sum of trees, where ©,, parametrizes the split variables, split points and predictions. To
estimate the ©,,, a forward stagewise procedure is used, and at each iteration one must solve

i=1

Given the regions R;,,, finding the optimal constants +;,, in each region is typically straightfor-
ward:

Sy = argmin 3 g, £ (02) 4 )
im

Zq Eij

Show that for an exponential loss, the solution to the above problem is the weighted log-odds in
each corresponding region

| ( S wen,, w1y = 1) )

:)/jm =3 log m

2
Remark: This differs from the classifiers built in the AdaBoost procedure, where the v;,, €

{~1,1}.
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Problem 2. Performance bound

We prove that if the weak classifiers perform substantially better than a random guess, then the
AdaBoost algorithm can return a proportion of the training data misclassified arbitrary small. We
assume here that at each iteration of the algorithm, the weights are renormalised by a constant
Z,m to remain a probability distribution,

(M) gt Brm Gom (1) n
(m+1) _ Wi "€ _ (m+1) _
w; = 7 form=1,...,M, so that Zwi =1.
The algorithm is initialised with wgl) = 1/nforalli=1,...,n. The error term derived during

the lectures thus becomes err(™ = Z” 1w(m)l(yZ # fm(z;)). The individual contribution of
each classifier is 3, = 1log((1 — err™)/err™).

(i) Show that
M
wZ(M'Fl) e yzf( )( i)
nHm 1
where fOD(z,) = SSM B fon ().

(ii) Derive the upper bound

n M M
%Z 1(y; # f™M (1)) < H T H \/err m)(1 — err(m).
=1 m=1 m=1

(iii) Conclude that provided err(™ = 1/2 — ~,,, where ~,, >  for all m, then

n

DS 1 # ) < exp (~29°M)

i=1

Discuss this result.
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Problem 3. Boosting for K-class classification.

We explore two ways to generalise the AdaBoost algorithm to K-class classification problems.
In Part I, we consider a generalisation of the exponential loss function, allowing us to derive a
similar looking algorithm. In Part Il, we consider the deviance as a loss function, and derive a
gradient tree boosting algorithm.

Suppose that the K classes are Cy,...,Ck, and let C denote a generic class. Our data consists
of n observations (x;,y;), for i = 1,...,n, where each input vector x; belongs to one of the K
classes. The coding used for target variable ; to denote the class appartenance is specific to the
loss function considered.

Part |
Consider the following coding for the i-th target vector y; = (vi1, - - -, Yir )",

Yik = 1

—%T otherwise .

Let f(z) = (fi(x),..., fx(x))* with S5 fi(x) = 0, and define
o ) = exp (=0 F@))

where y is a realisation of a random vector Y = (Y7,..., Yx).

(i) Explain in a few words why it is a good idea to consider the population minimiser f*(x) of
E(((Y, f(X))|X = z) as a classifier.

(ii) Using Lagrange multipliers, show that f*(x) subject to the zero-sum constraint is given by

fi(z) = (K —1) {logP(C = Cilz) — %ZlogP(C = cj|x)} :

J=1

where f*(z) = (fi(2), ..., [k(z)).

(iii) Deduce from (ii) an expression for the class probabilitiess P(C = Ci|x) in terms of the

fi(@).

(iv) Show that a multiclass boosting using this loss function leads to a reweighting algorithm
similar to AdaBoost. Present your final answer in the form of an algorithm, and explain
precisely each step in your derivation.

Part |l
Consider now the K-class classification problem where the targets y;; are coded as 1 if z; is in
class k, and zero otherwise. Put pi(z) = P(C = Ci|z). We make use of the representation

=——, k=1....K 1
pk<x> Z{ilefl(x), ) ) ’ ()

3
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under the constraint Zszl fi(x)=0.

Suppose that we have a current model for the fi(z), k = 1,..., K. We wish to update the
model for observations in a region R in predictor space, by adding constants fi(x) + ~yx, with

’}/KZO.

(v)

(vi)

(vii)

(viii)

Write down the multinomial log-likelihood for (z;,;), @ = 1,...,n, in terms of fi(z),
k=1,....K.

We wish to find the constants ~; which maximise the log-likelihood in region R. An
analytical expression is not available. Using only the diagonal of the Hessian matrix of
the log-likelihood, and starting from 7, = 0 for all £, show that a one-step approximate
Newton-Raphson update for v; is

ik — Pr\Ti
D i (7 1C0) R

> aer Pe(@) (1 —pr(2))

v

We prefer our update to sum to zero, as the current model does. Using symmetry argu-

ments, show that
K
R K-1 n 1 n
’Yk—T{’Yk —KE’YZ } )

is an appropriate update, where 7, is defined as in in question (v) forall k=1,... K.

Adapting the ideas of gradient boosting for regression, we arrive at Algorithm 1 presented
page 5.

(a) Explain in a few words what Algorithm 1 is doing.
(b) Show that step (2)(b)(i) in Algorithm 1 reduces to

Compute 7igm = Yik — Prm(T;) -

(c) Using similar arguments to (v) and (vi), show that the solution to step (2)(b)(iii) in
Algorithm 1 can be approximated as

K - 1 inERjkm Tikm
Yikm =
m K ineR: rlk’m‘(l - |rzkm|) ’

jkm

foryj=1,...,Jpand k=1,... K.
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Algorithm 1

(1) Initialise fV(z) =0fork=1,..., K.

(2) Form=1,....M

(a) Set
e k=1,....K
m\T) = s =1,..., .
Pk ( ) K @fz<m>($)
=1
(b) Fork=1,... K,
(i) Compute
0 (m)
Tikm = — 7y, < {E(yikn k (%))}
af}i )($z>
(ii) Fit a regression tree to the targets 7k, ¢ = 1,...,n, giving terminal regions

Rigmr j = Luev, Ion.
(ii) Compute for j=1,...,J,and k=1,... K,

Vjkm = arg mvin Z ¢ <Z/z‘, £ (i) + ’V)

Ti€Rjrm

(iv) Update
Jm

VY @) = @) ) Yem (@ € Rj)

Jj=1

(3) Output f(z) = f,EMH)(:c), fork=1,... K.

In Algorithm 1, /(y, f(x)) denotes the multinomial deviance loss function derived from the
multinomial log-likelihood obtained in question (v), Part Il, Problem 4, where the relationship

between f(z) = (fi(x),..., fx(x)) and p(z) = (p1(x),...,px(x)) is given in ({1]).



