
SL: Boosting

Problem 0.
Consider the problem of binary classification, with response variable y ∈ {−1, 1}, and exponential
loss `(y, f(x)) = exp(−yf(x)).

(i) The AdaBoost algorithm minimises the empirical (exponential) loss in a stage-wise manner.
Put f (m−1)(x) =

∑m−1
k=1 βkfk(x), where fk is the k-th weak learner, and βk a scaling factor.

At iteration m, we solve

(βm fm) = arg min
(β,f)

n∑
i=1

exp
{
−yi(f (m−1)(xi) + βf(xi))

}
.

Show that fm can be taken as a tree minimising a weighed error rate.

(ii) Derive the optimal solution βm.

(iii) Deduce from (i) and (ii) the AdaBoost algorithm.

Problem 1. Boosted tree model
The boosted tree model

f (M)(x) =
M∑
m=1

T (x; Θm)

is a sum of trees, where Θm parametrizes the split variables, split points and predictions. To
estimate the Θm, a forward stagewise procedure is used, and at each iteration one must solve

Θ̂m = arg min
Θm

n∑
i=1

`(yi, f
(m−1)(xi) + T (xi; Θm)) .

Given the regions Rjm, finding the optimal constants γjm in each region is typically straightfor-
ward:

γ̂jm = arg min
γjm

∑
xi∈Rjm

`(yi, f
(m−1)(xi) + γjm) .

Show that for an exponential loss, the solution to the above problem is the weighted log-odds in
each corresponding region

γ̂jm =
1

2
log

(∑
xi∈Rjm

w
(m)
i 1(yi = 1)∑

xi∈Rjm
w

(m)
i 1(yi = −1)

)
.

Remark: This differs from the classifiers built in the AdaBoost procedure, where the γjm ∈
{−1, 1}.

1

SL: Boosting

Problem 2. Performance bound
We prove that if the weak classifiers perform substantially better than a random guess, then the
AdaBoost algorithm can return a proportion of the training data misclassified arbitrary small. We
assume here that at each iteration of the algorithm, the weights are renormalised by a constant
Zm to remain a probability distribution,

w
(m+1)
i =

w
(m)
i e−tiβmGm(xi)

Zm
for m = 1, . . . ,M, so that

n∑
i=1

w
(m+1)
i = 1 .

The algorithm is initialised with w
(1)
i = 1/n for all i = 1, . . . , n. The error term derived during

the lectures thus becomes err(m) =
∑n

i=1 w
(m)
i 1(yi 6= fm(xi)). The individual contribution of

each classifier is βm = 1
2

log((1− err(m))/err(m)).

(i) Show that

w
(M+1)
i =

e−yif
(M)(xi)

n
∏M

m=1 Zm
,

where f (M)(xi) =
∑M

m=1 βmfm(xi).

(ii) Derive the upper bound

1

n

n∑
i=1

1(yi 6= f (M)(xi)) ≤
M∏
m=1

Zm =
M∏
m=1

2
√
err(m)(1− err(m)) .

(iii) Conclude that provided err(m) = 1/2− γm, where γm ≥ γ for all m, then

1

n

n∑
i=1

1(yi 6= f (M)(xi)) ≤ exp
(
−2γ2M

)
.

Discuss this result.

2

SL: Boosting

Problem 3. Boosting for K-class classification.
We explore two ways to generalise the AdaBoost algorithm to K-class classification problems.
In Part I, we consider a generalisation of the exponential loss function, allowing us to derive a
similar looking algorithm. In Part II, we consider the deviance as a loss function, and derive a
gradient tree boosting algorithm.

Suppose that the K classes are C1, . . . , CK , and let C denote a generic class. Our data consists
of n observations (xi, yi), for i = 1, . . . , n, where each input vector xi belongs to one of the K
classes. The coding used for target variable yi to denote the class appartenance is specific to the
loss function considered.

Part I
Consider the following coding for the i-th target vector yi = (yi1, . . . , yiK)t,

yik =

{
1 if xi ∈ Ck
− 1
K−1

otherwise .

Let f(x) = (f1(x), . . . , fK(x))t with
∑K

k=1 fk(x) = 0, and define

`(y, f(x)) = exp

(
− 1

K
ytf(x)

)
,

where y is a realisation of a random vector Y = (Y1, . . . , YK)t.

(i) Explain in a few words why it is a good idea to consider the population minimiser f ∗(x) of
E(`(Y, f(X))|X = x) as a classifier.

(ii) Using Lagrange multipliers, show that f ∗(x) subject to the zero-sum constraint is given by

f ∗k (x) = (K − 1)

{
logP(C = Ck|x)− 1

K

K∑
j=1

logP(C = Cj|x)

}
,

where f ∗(x) = (f ∗1 (x), . . . , f ∗K(x)).

(iii) Deduce from (ii) an expression for the class probabilities P(C = Ck|x) in terms of the
f ∗k (x).

(iv) Show that a multiclass boosting using this loss function leads to a reweighting algorithm
similar to AdaBoost. Present your final answer in the form of an algorithm, and explain
precisely each step in your derivation.

Part II
Consider now the K-class classification problem where the targets yik are coded as 1 if xi is in
class k, and zero otherwise. Put pk(x) = P(C = Ck|x). We make use of the representation

pk(x) =
efk(x)∑K
l=1 e

fl(x)
, k = 1, . . . , K , (1)

3

SL: Boosting

under the constraint
∑K

j=1 fj(x) = 0.

Suppose that we have a current model for the fk(x), k = 1, . . . , K. We wish to update the
model for observations in a region R in predictor space, by adding constants fk(x) + γk, with
γK = 0.

(v) Write down the multinomial log-likelihood for (xi, yi), i = 1, . . . , n, in terms of fk(x),
k = 1, . . . , K.

(vi) We wish to find the constants γk which maximise the log-likelihood in region R. An
analytical expression is not available. Using only the diagonal of the Hessian matrix of
the log-likelihood, and starting from γk = 0 for all k, show that a one-step approximate
Newton-Raphson update for γk is

γ+
k =

∑
xi∈R(yik − pk(xi))∑

xi∈R pk(xi)(1− pk(xi))
, for k = 1, . . . , K − 1 .

(vii) We prefer our update to sum to zero, as the current model does. Using symmetry argu-
ments, show that

γ̂k =
K − 1

K

{
γ+
k −

1

K

K∑
l=1

γ+
l

}
,

is an appropriate update, where γ+
k is defined as in in question (v) for all k = 1, . . . , K.

(viii) Adapting the ideas of gradient boosting for regression, we arrive at Algorithm 1 presented
page 5.

(a) Explain in a few words what Algorithm 1 is doing.

(b) Show that step (2)(b)(i) in Algorithm 1 reduces to

Compute rikm = yik − pkm(xi) .

(c) Using similar arguments to (v) and (vi), show that the solution to step (2)(b)(iii) in
Algorithm 1 can be approximated as

γjkm =
K − 1

K

∑
xi∈Rjkm

rikm∑
xi∈Rjkm

|rikm|(1− |rikm|)
,

for j = 1, . . . , Jm and k = 1, . . . , K.

4

SL: Boosting

Algorithm 1

(1) Initialise f
(1)
k (x) = 0 for k = 1, . . . , K.

(2) For m = 1, . . . ,M

(a) Set

pkm(x) =
ef

(m)
k (x)∑K

l=1 e
f
(m)
l (x)

, k = 1, . . . , K .

(b) For k = 1, . . . , K,

(i) Compute

rikm = − ∂

∂f
(m)
k (xi)

{
`(yik, f

(m)
k (xi))

}
(ii) Fit a regression tree to the targets rikm, i = 1, . . . , n, giving terminal regions

Rjkm, j = 1, . . . , Jm.

(iii) Compute for j = 1, . . . , Jm and k = 1, . . . , K,

γjkm = arg min
γ

∑
xi∈Rjkm

`
(
yi, f

(m)
k (xi) + γ

)
(iv) Update

f
(m+1)
k (x) = f

(m)
k (x) +

Jm∑
j=1

γjkm1(x ∈ Rjkm)

(3) Output f̂k(x) = f
(M+1)
k (x), for k = 1, . . . , K.

In Algorithm 1, `(y, f(x)) denotes the multinomial deviance loss function derived from the
multinomial log-likelihood obtained in question (v), Part II, Problem 4, where the relationship
between f(x) = (f1(x), . . . , fK(x)) and p(x) = (p1(x), . . . , pK(x)) is given in (1).

5

