
SL: Vapnik-Chervonenkis Theory

Problem 0. Error bound for binary classification

Part I: Hoeffding inequalities.
Let Y be a zero mean random variable, such that Y ∈ [a, b] almost surely.

(i) Using convex properties of the exponential on the interval [a, b], show that for s > 0,

E esY ≤
{

1− µ+ µ es(b−a)
}
e−sµ(b−a) = eϕ(u) ,

where µ = −a/(b− a), and ϕ(u) = −µu+ log(1− µ+ µeu).

(ii) Using a second order Taylor expansion of ϕ around 0, show that

ϕ(u) ≤ s2(b− a)2

8
,

and conclude that E esY ≤ exp
(
s2(b−a)2

8

)
.

(iii) Let X1, X2, . . . , Xn be independent, identically distributed bounded random variables, such
that Xi ∈ [ai, bi] with probability 1, and put Sn =

∑n
i=1Xi. Making use of Markov

inequality, show that for any s, ε > 0,

P

(
n∑
i=1

(Xi − EXi) ≥ ε

)
≤ e−sε

n∏
i=1

E es(Xi−EXi) .

(iv) Making use of the bounds derived in (ii) and (iii), conclude that

P(Sn − ESn ≥ ε) ≤ exp

(
− 2ε2∑

i(bi − ai)2

)
.

(v) Derive similar bounds for P(Sn − ESn ≤ −ε) and P(|Sn − ESn| ≥ ε).

Part II: Error bound
Consider the problem of binary classification, with bounded loss function ` : Y × Y → [0, 1].
Consider a finite collection of models F , with cardinal |F|. As usual, the risk of a fixed clas-
sifier f ∈ F is denoted R(f) = E `(Y, f(X)), and the empirical risk is denoted R̂n(f) =
n−1

∑n
i=1 `(Yi, f(Xi)), based on a learning sample Ln = {(X1, Y1), . . . , (Xn, Yn)}.

(vi) Making use of the bound derived in (iv), show that

P(R(f)− R̂n(f) ≥ ε) ≤ e−2nε
2

. (1)

(vii) Conclude that for all f ∈ F and 0 < δ < 1, with probability at least 1− δ, holds

R(f) ≤ R̂n(f) +

√
log |F| − log δ

2n
. (2)
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Problem 1. Bound for countably infinite F
We derive a bound similar to (2) in Problem1 in the case of a countable class of models F . A
possible approach is to assign a positive number c(f) for each f ∈ F , such that∑

f∈F

e−c(f) = 1 .

The number c(f) can be interpreted as a measure of complexity of f , or as the logarithm of a
prior probability attached to f .

(i) Make sure you understand the interpretations given for c(f).

(ii) Show that the bound (1) in Problem 1 can be rewritten

P

(
R(f)− R̂n(f) ≥

√
− log η

2n

)
≤ η , (3)

for any η > 0.

(iii) We let η introduced in (3) depend on the model y. Specifically, replace η with δ(f) =
δe−c(f), for some δ > 0. Conclude that with probability at least 1− δ, for all f ∈ F ,

R(f) ≤ R̂n(f) +

√
c(f)− log δ

2n
. (4)

(iv) By considering a uniform prior in the case of a finite F , show that the bound (4) coincides
with (2).

Problem 2. Sauer’s Lemma
Sauer’s Lemma in its original form states that for a model class F with finite VC dimension d,

S(F , n) ≤
d∑
i=0

(
n

i

)
.

Show that this implies S(F , n) ≤ (n+ 1)d for all n

Problem 3. VC dimension
Derive the VC dimension of the following classes of functions. For part (i), you will in addition
derive the shattering number S(F , n), for any n ≥ 1.

(i) F = {f : R→ {0, 1} | f(x) = 1(x ≤ a), a ∈ R}

(ii) F = {f : R2 → {0, 1} | f(x) = 1(xi ≤ a) or 1(xi ≥ a) , i = 1 or 2 , where x = (x1, x2)}

(iii) F = {f : R2 → {0, 1} | f(x) = 1(x ∈ C) , C ⊂ R2 convex}.
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Problem 4.
We denote by X the input space, and let A1, . . . , Am be non empty subsets of X , such that
A1, . . . , Am form a partition of X . Let F be the set of functions X → R, constant on each set
Aj, so that a function f ∈ F can be written

f(x) =


y1 if x ∈ A1

...
...

...

ym if x ∈ Am ,

where y1, . . . , ym are real numbers. Put

G := {g : X → {−1, 1} | g(x) = sign[f(x)] , for f ∈ F} ,

where sign(u) := 1(u ≥ 0)− 1(u < 0).

(i) How many elements are in G?

(ii) What is the Vapnik Chervonenkis dimension of G?

Consider a binary classification problem, under a 0/1 loss `(y, g(x)) = 1(y 6= g(x)), where
y ∈ {−1, 1}. The risk of g ∈ G is denoted R(g) := E{1(Y 6= g(X))}. Let ḡ be the best
classifier in G, and ĝn the empirical risk minimizer, based on a training sample of size n.

(iii) Using an argument established during the lecture, show that with probability larger than
1− δ,

R(ĝn) ≤ R(ḡ) +

√
2[(m+ 1) ln(2)− ln(δ)]

n
.

(iv) Deduce from (iii) a bound for

E {R(ĝn)−R(ḡ)}2 − 2(m+ 1) ln 2

n
.

(v) Deduce from (iv) a bound for E{R(ĝn)} −R(ḡ).
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