SL: Vapnik-Chervonenkis Theory

Problem 0. Error bound for binary classification

Part I: Hoeffding inequalities.
Let Y be a zero mean random variable, such that Y € [a, b] almost surely.

(i) Using convex properties of the exponential on the interval [a, b], show that for s > 0,

EesY < {1 — i+ Iues(bfa)} efs,u(bfa) _ ecp(u)’
where = —a/(b—a), and p(u) = —pu + log(1 — u + pe).
(ii) Using a second order Taylor expansion of ¢ around 0, show that

s%(b—a)?
p(u) < — 3

and conclude that Ee®¥ < exp (M)

(iii) Let X1, X5, ..., X,, be independent, identically distributed bounded random variables, such
that X; € [a;, b;] with probability 1, and put S, = > | X;. Making use of Markov

inequality, show that for any s, e > 0,

P (i(Xz . EXZ) > 6) < e %€ ﬁEeS(Xi—EXi) .

=1 i=1

(iv) Making use of the bounds derived in (ii) and (iii), conclude that

2€*
P(SR—ES,,LZE) Sexp —m .

(v) Derive similar bounds for P(S,, — ES,, < —¢) and P(|S,, —E S,| > ¢).

Part Il: Error bound

Consider the problem of binary classification, with bounded loss function ¢ : ) x ¥ — [0, 1].
Consider a finite collection of models F, with cardinal |F|. As usual, the risk of a fixed clas-

sifier f € F is denoted R(f) = EL(Y, f(X)), and the empirical risk is denoted R, (f)

n~t3" (Y, f(X;)), based on a learning sample £,, = {(X1,Y1),..., (X, Yo)}.

(vi) Making use of the bound derived in (iv), show that

P(R(f) = Ru(f) Z €) S e

(vii) Conclude that for all f € F and 0 < § < 1, with probability at least 1 — 4§, holds

log | F| —log ¢

R(f) < Ra(f) + \/ o
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Problem 1. Bound for countably infinite F
We derive a bound similar to in Problem1l in the case of a countable class of models F. A
possible approach is to assign a positive number ¢(f) for each f € F, such that

Ze’c(f) =1.

feFr

The number ¢(f) can be interpreted as a measure of complexity of f, or as the logarithm of a
prior probability attached to f.

(i) Make sure you understand the interpretations given for c(f).

(ii) Show that the bound (1)) in Problem 1 can be rewritten

P <R(f) —Ra(f) > tf”) <, (3)
for any n > 0.

(iii)) We let n introduced in depend on the model y. Specifically, replace n with 6(f) =
de—<f) for some § > 0. Conclude that with probability at least 1 — 9, for all f € F,

5 c(f) —logd

R(f) < Ralf) + *)

(iv) By considering a uniform prior in the case of a finite F, show that the bound coincides

with .

Problem 2. Sauer’'s Lemma
Sauer’s Lemma in its original form states that for a model class F with finite VC dimension d,

d
n
< .
S(F,n) < ; (2)
Show that this implies S(F,n) < (n + 1)? for all n

Problem 3. VC dimension
Derive the VC dimension of the following classes of functions. For part (i), you will in addition
derive the shattering number S(F,n), for any n > 1.

(i) F={f:R—={0,1}|f(z) =1(z < a), a € R}
(i) F={f:R* = {0,1}| f(z) = 1(z; < a) or 1(z; > a),i=1or 2, where x = (x1,25)}
(i) F={f:R* = {0,1}| f(x) = 1(z € C), C C R? convex}.
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Problem 4.
We denote by X the input space, and let Ay,..., A,, be non empty subsets of X, such that
Ay, ..., A, form a partition of X'. Let F be the set of functions X — R, constant on each set

A;, so that a function f € F can be written
Y1 if v € Ay
fle) = Lo
Ym fx€A,,
where y1, ...,y are real numbers. Put
G:={g: & = {-1 1} |g(x) = sign[f(z)], for f € F},
where sign(u) := 1(u > 0) — 1(u < 0).
(i) How many elements are in G?
(ii) What is the Vapnik Chervonenkis dimension of G?

Consider a binary classification problem, under a 0/1 loss ¢(y,g(x)) = 1(y # g(x)), where
y € {—1,1}. The risk of g € G is denoted R(g) := E{1(Y # ¢g(X))}. Let g be the best
classifier in G, and g, the empirical risk minimizer, based on a training sample of size n.

(iii) Using an argument established during the lecture, show that with probability larger than
1-4,

R@»gmm+¢Wm+DTm—m@y
(iv) Deduce from (iii) a bound for
B{R(,) - R(g) - TR

(v) Deduce from (iv) a bound for E{R(g.)} — R(9).



