Problem 0. Error bound for binary classification

Part I: Hoeffding inequalities.

Let Y be a zero mean random variable, such that $Y \in [a, b]$ almost surely.

(i) Using convex properties of the exponential on the interval [a, b], show that for s > 0,

$$\mathbf{E} \, e^{sY} \le \left\{ 1 - \mu + \mu \, e^{s(b-a)} \right\} e^{-s\mu(b-a)} = e^{\varphi(u)} \, .$$

where $\mu = -a/(b-a)$, and $\varphi(u) = -\mu u + \log(1-\mu+\mu e^u)$.

(ii) Using a second order Taylor expansion of φ around 0, show that

$$\varphi(u) \le \frac{s^2(b-a)^2}{8} \,,$$

and conclude that $\mathbf{E} e^{sY} \leq \exp\left(\frac{s^2(b-a)^2}{8}\right)$.

(iii) Let X_1, X_2, \ldots, X_n be independent, identically distributed bounded random variables, such that $X_i \in [a_i, b_i]$ with probability 1, and put $S_n = \sum_{i=1}^n X_i$. Making use of Markov inequality, show that for any $s, \epsilon > 0$,

$$\mathbf{P}\left(\sum_{i=1}^{n} (X_i - \mathbf{E} X_i) \ge \epsilon\right) \le e^{-s\epsilon} \prod_{i=1}^{n} \mathbf{E} e^{s(X_i - \mathbf{E} X_i)}$$

(iv) Making use of the bounds derived in (ii) and (iii), conclude that

$$\mathbf{P}(S_n - \mathbf{E} S_n \ge \epsilon) \le \exp\left(-\frac{2\epsilon^2}{\sum_i (b_i - a_i)^2}\right)$$

(v) Derive similar bounds for $\mathbf{P}(S_n - \mathbf{E} S_n \leq -\epsilon)$ and $\mathbf{P}(|S_n - \mathbf{E} S_n| \geq \epsilon)$.

Part II: Error bound

Consider the problem of binary classification, with bounded loss function $\ell : \mathcal{Y} \times \mathcal{Y} \to [0, 1]$. Consider a finite collection of models \mathcal{F} , with cardinal $|\mathcal{F}|$. As usual, the risk of a fixed classifier $f \in \mathcal{F}$ is denoted $\mathcal{R}(f) = \mathbf{E} \ell(Y, f(X))$, and the empirical risk is denoted $\hat{\mathcal{R}}_n(f) = n^{-1} \sum_{i=1}^n \ell(Y_i, f(X_i))$, based on a learning sample $\mathcal{L}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$.

(vi) Making use of the bound derived in (iv), show that

$$\mathbf{P}(\mathcal{R}(f) - \hat{\mathcal{R}}_n(f) \ge \epsilon) \le e^{-2n\epsilon^2}.$$
 (1)

(vii) Conclude that for all $f \in \mathcal{F}$ and $0 < \delta < 1$, with probability at least $1 - \delta$, holds

$$\mathcal{R}(f) \le \hat{\mathcal{R}}_n(f) + \sqrt{\frac{\log |\mathcal{F}| - \log \delta}{2n}}.$$
 (2)

Problem 1. Bound for countably infinite \mathcal{F}

We derive a bound similar to (2) in Problem1 in the case of a countable class of models \mathcal{F} . A possible approach is to assign a positive number c(f) for each $f \in \mathcal{F}$, such that

$$\sum_{f \in \mathcal{F}} e^{-c(f)} = 1$$

The number c(f) can be interpreted as a measure of complexity of f, or as the logarithm of a prior probability attached to f.

- (i) Make sure you understand the interpretations given for c(f).
- (ii) Show that the bound (1) in Problem 1 can be rewritten

$$\mathbf{P}\left(\mathcal{R}(f) - \hat{\mathcal{R}}_n(f) \ge \sqrt{\frac{-\log\eta}{2n}}\right) \le \eta,$$
(3)

for any $\eta > 0$.

(iii) We let η introduced in (3) depend on the model y. Specifically, replace η with $\delta(f) = \delta e^{-c(f)}$, for some $\delta > 0$. Conclude that with probability at least $1 - \delta$, for all $f \in \mathcal{F}$,

$$\mathcal{R}(f) \le \hat{\mathcal{R}}_n(f) + \sqrt{\frac{c(f) - \log \delta}{2n}}.$$
(4)

(iv) By considering a uniform prior in the case of a finite \mathcal{F} , show that the bound (4) coincides with (2).

Problem 2. Sauer's Lemma

Sauer's Lemma in its original form states that for a model class \mathcal{F} with finite VC dimension d,

$$\mathcal{S}(\mathcal{F},n) \leq \sum_{i=0}^{d} \binom{n}{i}.$$

Show that this implies $\mathcal{S}(\mathcal{F},n) \leq (n+1)^d$ for all n

Problem 3. VC dimension

Derive the VC dimension of the following classes of functions. For part (i), you will in addition derive the shattering number $S(\mathcal{F}, n)$, for any $n \ge 1$.

(i)
$$\mathcal{F} = \{f : \mathbb{R} \to \{0, 1\} \mid f(x) = \mathbf{1}(x \le a), a \in \mathbb{R}\}$$

(ii) $\mathcal{F} = \{f : \mathbb{R}^2 \to \{0, 1\} \mid f(x) = \mathbf{1}(x_i \le a) \text{ or } \mathbf{1}(x_i \ge a), i = 1 \text{ or } 2, \text{ where } x = (x_1, x_2)\}$
(iii) $\mathcal{F} = \{f : \mathbb{R}^2 \to \{0, 1\} \mid f(x) = \mathbf{1}(x \in C), C \subset \mathbb{R}^2 \text{ convex}\}.$

Problem 4.

We denote by \mathcal{X} the input space, and let A_1, \ldots, A_m be non empty subsets of \mathcal{X} , such that A_1, \ldots, A_m form a partition of \mathcal{X} . Let \mathcal{F} be the set of functions $\mathcal{X} \to \mathbb{R}$, constant on each set A_i , so that a function $f \in \mathcal{F}$ can be written

$$f(x) = \begin{cases} y_1 & \text{if } x \in A_1 \\ \vdots & \vdots & \vdots \\ y_m & \text{if } x \in A_m \, , \end{cases}$$

where y_1, \ldots, y_m are real numbers. Put

$$\mathcal{G} := \{g : \mathcal{X} \to \{-1, 1\} \mid g(x) = \operatorname{sign}[f(x)], \text{ for } f \in \mathcal{F}\}$$

where $sign(u) := \mathbf{1}(u \ge 0) - \mathbf{1}(u < 0).$

- (i) How many elements are in \mathcal{G} ?
- (ii) What is the Vapnik Chervonenkis dimension of \mathcal{G} ?

Consider a binary classification problem, under a 0/1 loss $\ell(y, g(x)) = \mathbf{1}(y \neq g(x))$, where $y \in \{-1, 1\}$. The risk of $g \in \mathcal{G}$ is denoted $\mathcal{R}(g) := \mathbf{E}\{\mathbf{1}(Y \neq g(X))\}$. Let \bar{g} be the best classifier in \mathcal{G} , and \hat{g}_n the empirical risk minimizer, based on a training sample of size n.

(iii) Using an argument established during the lecture, show that with probability larger than $1-\delta$,

$$\mathcal{R}(\hat{g}_n) \le \mathcal{R}(\bar{g}) + \sqrt{\frac{2[(m+1)\ln(2) - \ln(\delta)]}{n}}.$$

(iv) Deduce from (iii) a bound for

$$\mathbf{E}\left\{\mathcal{R}(\hat{g}_n) - \mathcal{R}(\bar{g})\right\}^2 - \frac{2(m+1)\ln 2}{n}$$

(v) Deduce from (iv) a bound for $\mathbf{E}\{\mathcal{R}(\hat{g}_n)\} - \mathcal{R}(\bar{g})$.