
SL: Linear Classifiers

Problem 0. Binary logistic regression
Consider a two-class classification problem. The training data consists of n independent and
identically distributed observations (x1, y1), . . . , (xn, yn), where each yi ∈ {0, 1} and xi ∈ Rd.
We consider classification made using logistic regression. The posterior probabilities P(Y = k |
X = x) for k = 0, 1 are modelled as follows,

log

(
P(Y = 1 | X = x)

P(Y = 0 | X = x)

)
= β0 + β1x1 + . . .+ βpxp = β0 + βtx ,

where βt = (β1, . . . , βd) and xt = (x1, . . . , xd) ∈ Rd.

(a) Show that

P(Y = 1 | X = x) = σ(β0 + βtx) = 1−P(Y = 0 | X = x) ,

where σ(u) = eu/(1 + eu) is the sigmoid function.

(b) Coefficients β0, β1, . . . , βp are estimated using maximum likelihood. Consider the log like-
lihood function,

`(β0, β) := log

(
n∏
i=1

p(yi | xi, β0, β)

)
,

where we used the convenient notation p(yi | xi, β0, β) = P(Y = yi | X = xi). Show that

`(β0, β) =
n∑
i=1

yi log σi + (1− yi) log(1− σi) ,

where we defined σi := σ(β0 + βtxi).

(c) Show that for i = 1, . . . , n and j = 0, . . . , d,

∂ log σi
∂βj

= xij(1− σi) ,

and
∂ log(1− σi)

∂βj
= −xijσi ,

where xi0 ≡ 1 for all i = 1, . . . , n. Deduce that

∂`(β0, β)

∂βj
=

n∑
i=1

(yi − σi)xij .

(d) Deduce from question (c) that the gradient 5β0,β`(β0, β) of ` with respect to (β0, β) can
be written in the matrix form

5β`(β0, β) = X t(y − σ) ,

where X is an n× (d+ 1) matrix, and σ and y are column vectors that you specify.
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(e) Show that for j, k = 0, . . . , d,

∂`(β0, β)

∂βjβk
= −

n∑
i=1

xijxikσi(1− σi) .

Deduce that the Hessian can be written as

52
β`(β0, β) = −X tWX ,

for a matrix W that you will specify.

(f) Put b := (β0, β), and b̂ := (β̂0, β̂), the maximum likelihood estimator of b. Deduce from
the previous questions the asymptotic distribution of n1/2(b̂− b).

(g) Recall what Newton method for unconstrained minimisation problems is. Write down a
generic expression for Newton algorithm.

(h) We numerically solve 5β`(β0, β) = 0 using Newton method. Show that a single step in
Newton algorithm can be written

β̃(t+1) = (X tWX)−1X tWz(t) ,

where z(t) denotes the adjusted response, function of the current parameter estimates β̃(t).
Give the expression of z(t).

(i) Deduce from (h) why Newton algorithm for logistic regression is commonly referred to as
an iterative reweighed least square algorithm.

Problem 1. Optimal Linear Risk
The risk of a fixed binary classifier f under the 0/1 loss `0 is

R(f) = E{`0(Y, f(X))} = P(Y 6= f(X)) , (1)

where Y ∈ {0, 1} and X ∈ Rd. Given β0 ∈ R and β ∈ Rd, a linear classifier fβ0,β is such that

fβ0,β(x) =

{
1 if β0 + βtx ≥ 0

0 if β0 + βtx < 0

The optimal linear risk R̄ is defined by R̄ = infβ0,βR(fβ0,β) .

(i) Suppose in questions (i), (ii) and (iii) that X is univariate. For y′ ∈ {0, 1} and x′ ∈ R, we
define a linear discrimination rule as

fx′,y′(x) =

{
y′ if x ≤ x′

1− y′ if x > x′ .

According to (1), the goal is the find the values of x′ and y′ which minimise the misclassi-
fication error,

(x∗, y∗) = arg min
(x′,y′)

P(Y 6= fx′,y′(X)) .
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Suppose that P(Y = 1) = p = 1 − P(Y = 0), X|Y = j ∼ Fj, mj = E(X|Y = j) and
σ2
j = var(X|Y = j). Check that the optimal linear risk can be written

R̄ = inf
(x′,y′)

1{y′=0} {pF1(x
′) + (1− p)(1− F0(x

′))}+1{y′=1} {p(1− F1(x
′)) + (1− p)F0(x

′))} .

(ii) Prove the Chebyshev-Cantelli inequality, which states that for any u ≥ 0,

P(X − EX > u) ≤ var(X)

var(X) + u2
.

Argue that a similar inequality holds for P(X − EX ≤ −u).

(iii) Deduce from (i) and (ii) that

R̄ ≤
(

1 +
(m0 −m1)

2

(σ0 + σ1)2

)−1
.

(iv) Generalise the upper bound derived in (iii) for multivariate feature points X ∈ Rd.

Problem 2. Probit regression
We consider the problem of two-class classification using probit regression. It will be convenient
to code the two classes associated with xi ∈ Rd with 0/1 responses yi. Under the probit model,

p(yi | xi, β) = Φyi
i (1− Φi)

1−yi ,

where Φi = Φ(β0 + βtxi), and Φ is the standard normal cdf. Let (x1, y1), . . . , (xn, yn) be our
learning sample.

(i) Give an interpretation of the probit model using a latent variable formulation, similar to
the one presented on page 8, Chapter 5 of the lecture notes.

(ii) Write down the log-likelihood `(β).

(iii) Show that

∂`(β0, β)

∂βj
=

n∑
i=1

φi(yi − Φi)

Φi(1− Φi)
xij ,

where φi := φ(β0 +βtxi), with φ the standard normal pdf, and xi0 ≡ 1 for all i = 1, . . . , n.

(iv) Show that

∂`(β0, β)

∂βk∂βj
= −

n∑
i=1

xijxikφi

(
yi
φi + (β0 + βtxi)Φi

Φ2
i

+ (1− yi)
φi − (β0 + βtxi)(1− Φi)

(1− Φi)2

)
.
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(v) Deduce from (iii) that the Fisher information matrix is I = (Ijk), with

Ijk =
n∑
i=1

xijxik
φ2
i

Φi(1− Φi)
,

and re-express the right-hand side in matrix form. Deduce the expression of the asymptotic
covariance matrix of the maximum likelihood estimator and give an estimate of it.

Problem 3. Multiclass logistic regression
We consider logistic regression with K > 2 classes. We use the notation

yi = (yi,1, . . . , yi,(K−1))
t ∈ RK−1 ,

where response yi,k = 1 if observation i belongs to class k, for k = 1, . . . , K − 1, and 0
otherwise. The i-th input vector is denoted xi = (xi,0, . . . , xi,d)

t ∈ Rd+1, for i = 1, . . . , n, with
xi,0 = 1. Let βk = (βk,0, . . . , βk,d)

t ∈ Rd+1 be the parameter vector corresponding to class k, for
k = 1, . . . , K − 1. Finally, put θ := (βt1, . . . , β

t
K−1)

t.

(i) Recall the expression of the posterior probabilities

P(Y = k | X = x, θ)

under the multi-class logistic regression model.

(ii) Show that the log-likelihood can be written as

`(θ) =
n∑
i=1

{
K−1∑
j=1

yi,j β
t
j xi − log

(
1 +

K−1∑
`=1

exp(βt` xi)

)}
.

We introduce further notation: for 1 ≤ k ≤ K − 1,

zk := (y1,k, . . . , yn,k)
t ∈ Rn

pk := (P(Y = k | x1), . . . , P(Y = k | xn))t ∈ Rn ,

and

X :=

 . . . xt1 . . .
...

. . . xtn . . .

 ∈ Rn×(d+1) , X t :=

 Xt

. . .

Xt

 ∈ R(K−1)(d+1)×(K−1)n ,

where the matrix X t is a (K − 1)× (K − 1) diagonal bloc matrix, with diagonal blocs Xt.

(iii) Show that the gradient of `(θ) is given by

5θ`(θ) = X t

 z1 − p1
...

zK−1 − pK−1

 .
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(iv) Show that the Hessian can be written in the form

52
θ`(θ) = −X tWX ,

where W is a non-diagonal bloc matrix. Show that W can be expressed in terms of K− 1
diagonal matrices Ql ∈ Rn×n, l = 1, . . . , K − 1, and K − 1 diagonal matrices Rl ∈ Rn×n,
l = 1, . . . , K − 1,

W =


Q1 R1R2 . . .

R2R1 Q2 . . .
...

...
. . .

Qn

 .

Give the expression of the matrices Ql and Rl.

(v) We use a Newton procedure to iteratively minimise the log-likelihood. Show that at each
iteration, we are solving a new non-diagonal weighted least square problem. Specify the
value of the working response and the weight matrix.

Problem 3.
Suppose that within each class {1, . . . , K}, the data follow a multinomial distribution. Specifi-
cally, the i-th observation (Xi, Yi) is such that

P(Xi = xi | Yik = 1) =
xi!

xi1! . . . xim!
pxi1k1 . . . p

xim
km , k = 1, . . . , K ,

where xi := (xi1, . . . .xim), xi :=
∑

l xil,
∑

l pkl = 1, and Yi := (Yi1, . . . , YiK), where Yik = 1 if
observation Xi is in class k, and 0 otherwise. Put πk = P(Yik = 1). Our goal is to predict the
class of a new observation, based on the model above.

(i) How many parameters do we need to estimate?

(ii) Write down the log-likelihood associated with a training sample Ln = {(x1, y1), . . . , (xn, yn)}
of size n.

(iii) Derive the maximum likelihood estimator (MLE) for each parameter of the model.

(iv) What happens for categories with zero count? Suggest an easy modification of the MLE
which takes care of this problem.
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