
SL: Reproducing Kernel Hilbert Spaces

Problem 0.
Let Ln = {(x1, y1), . . . , (xn, yn)} be our learning sample, where yi ∈ R, xi ∈ X, for some some
non-empty set X. Let ` : R×R→ R+ be a cost function, and H be a RKHS with reproducing
kernel K(·, ·) on X ×X. We are looking for a solution to the problem

f ∗(x) = arg min
f∈H

n∑
i=1

`(f(xi), yi) + Ω(||f ||H) , (1)

where Ω : R+ → R is a strictly increasing function, and || · ||H the norm induced by the dot
product 〈·, ·〉H defined on H.

(a) Argue with some reasonably amount of details why ||f ||H <∞ ensures that f is a relatively
smooth function.

(b) Our goal is now to derive a general expression for the solution to the problem (1). Let
f ∈ H. Using the reproducing property, show that

f(xi) =
n∑
j=1

αjK(xj, xi) ,

for some coefficients αj.

(c) Conclude that necessarily the solution f ∗(x) to (1) must satisfy

f ∗(x) =
n∑
j=1

αjK(x, xi) , ∀x ∈ X ,

for some coefficients αj.

(d) We are now looking for a regression function f ∈ H which minimizes the penalized sum of
squares

C(f) =
n∑
i=1

(yi − f(xi))
2 + λ||f ||2H .

It directly follows from question (c) that the solution can be written f ∗(x) =
∑n

i=1 αiK(x, xi).

(i) Show that the problem of solving f ∗ = arg minC(f) is equivalent to

α∗ = arg min
α

(y −Kα)t(y −Kα) + λαtKα ,

where αt = (α1, . . . , αn), yt = (y1, . . . , yn), and some matrix K whose entries you
will derive.

(ii) Derive the optimal solution α∗ to the problem derived in (d).

(e) Consider now the problem of binary classification, with yi ∈ {−1, 1}. Which loss ` and
penalty Ω would you use to turn (1) into a kernel SVM problem? Derive the primal and
dual optimisation problem of the kernel SVM, and give an expression for the final classifier.
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Problem 1.

(i) Take some X ⊂ Rp. Show that for f : X → R, the function K(x, y) = f(x)f(y) is a
valid kernel.

(ii) Put X = [−2, 2]2, and consider the set of functions on [−2, 2] defined by the kernel
K(x, y) = 1 + xy exp(x+ y).

(a) Argue that K is a legitimate kernel function.

(b) Show that g(x) = 1 and h(x) = x exp(x) both belong to the RKHS H with kernel
K.

(c) Determine whether or not g and h are orthonormal. If they are not, find an orthonormal
basis for the span of {g, h} in the RKHS with kernel K.

Problem 2.
We consider real functions on the compact interval X = [−π, π] with periodic boundary condi-
tions. A Fourier series expansion yields the representation

f(x) =
+∞∑
l=−∞

fl e
ilx =

+∞∑
l=−∞

fl ψl(x) .

where we put ψl(x) := exp(ilx), Since f(x) is real, the Fourier coefficients satisfy f−l = f̄l,
where z̄ denotes the complex conjugate of z. Consider a Kernel which takes a single argument
corresponding to the difference of the inputs, K(x, y) = K(x− y), with Fourier representation,

K(x) =
+∞∑
l=−∞

kl ψl(x) , (2)

where the coefficients satisfy k−l = kl and k̄l = kl, assuming K to be a symmetric real function.
Let H be the set of functions of the form

H =

{
f : X → R | f(x) =

∑
l

fl ψl(x)

}
,

endowed with the dot product

〈f, g〉H :=
∑
l

fl ḡl
kl

. (3)

It can be shown that H is an RKHS associated with K, provided ||f ||H <∞, where || · ||H is the
norm induced by the dot product.

(i) Verify that the reproducibility property for f holds,

f(x) = 〈f, K(·, x)〉H ,
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(ii) Check that the reproducibility property holds as well for the kernel itself,

〈K(·, x), K(·, y)〉H = K(x, y) .

(iii) You decide to perform a kernel ridge regression with the kernel (2).

(a) Write down the penalized sum of squares objective function you want to minimize.

(b) Using the representer theorem, provide a general expression of the minimizer.

(c) Using the definition of the dot product (3), explain why the penalty term derived in
question (ii)(a) favours smooth solutions.

Problem 3. Gaussian and Laplace kernels

(i) Consider the Gaussian kernel on X = R,

K(x, y) = K(x− y) = exp

(
−1

2
(x− y)2

)
.

We define an RKHS with inner product

〈f, g〉H =
1√
2π

∫
R

f̂(ω)ĝ(ω)

κ̂(ω)
dω ,

where f̂ denotes the Fourier transform of f ,

f̂(ω) =
1√
2π

∫
R
f(x)e−iωxdx , and f(x) =

1√
2π

∫
R
f̂(ω)eiωxdω .

Given a function f(x) = exp (−ax2) ∈ H, with a > 0, what is the minimum a for which
||f ||H <∞?

Hint: You may use the known results that e−x
2/2 has Fourier transform e−ω

2/2, and that
f(ax) has Fourier transform af̂(ω/a).

(ii) Define the Laplace kernel on R,

K(x, y) = K(x− y) = exp

(
−1

2
|x− y|

)
,

with Fourier transform

κ̂(ω) =
2

1 + ω2
.

Given the inner product in question (i), comment on the smoothing penalty enforced by
the RKHS norm ||f ||H for the Gaussian kernel, versus that with the Laplace kernel.
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Problem 4. Kernel SVM
Consider a binary classification problem, with the following training dataset, with input variable
x ∈ R,

xi 1 2 3 5
yi 1 -1 1 -1

(i) Is there a linear classifier based only on x with zero training error?

(ii) Is there a kernel SVM classifier based on the kernel K(x, y) = (1 + xy)2 with zero training
error?

(iii) Is there a kernel SVM classifier based on the kernel K(x, y) = exp(−2(x− y)2) with zero
training error?

Problem 5. Consider the space of functions

H := {f : [0, 1]→ R | absolutely continuous, f(0) = 0, f ′ ∈ L2[0, 1]} ,

where L2[0, 1] denotes the space of square integrable functions on the interval [0, 1]. The space
H is endowed with the bilinear form

〈f, g〉H :=

∫ 1

0

f ′(x)g′(x)dx .

Show that H is an RKHS with reproducing kernel K(x, y) = min(x, y).

You do not need to show that H is complete, but you need to show everything else; in particular
that the bilinear form 〈f, g〉H is an inner product on H.

Problem 6. Let H be an RKHS with reproducing kernel K. Solve the kernel logistic regression
problem

min
f∈H

n∑
i=1

log
(
1 + e−yif(xi)

)
+
λ

2
||f ||2H

using a Newton procedure. Show that each iteration of the algorithm corresponds to a new
weighted kernel ridge regression problem, that you will make explicit.
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