Problem 0.

Let $\mathcal{L}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$ be our learning sample, where $y_i \in \mathbb{R}$, $x_i \in X$, for some some non-empty set X. Let $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ be a cost function, and \mathcal{H} be a RKHS with reproducing kernel $K(\cdot, \cdot)$ on $X \times X$. We are looking for a solution to the problem

$$f^{*}(x) = \arg\min_{f \in \mathcal{H}} \sum_{i=1}^{n} \ell(f(x_{i}), y_{i}) + \Omega(||f||_{\mathcal{H}}),$$
(1)

where $\Omega : \mathbb{R}_+ \to \mathbb{R}$ is a strictly increasing function, and $|| \cdot ||_{\mathcal{H}}$ the norm induced by the dot product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ defined on \mathcal{H} .

- (a) Argue with some reasonably amount of details why $||f||_{\mathcal{H}} < \infty$ ensures that f is a relatively smooth function.
- (b) Our goal is now to derive a general expression for the solution to the problem (1). Let $f \in \mathcal{H}$. Using the reproducing property, show that

$$f(x_i) = \sum_{j=1}^n \alpha_j K(x_j, x_i) \,,$$

for some coefficients α_j .

(c) Conclude that necessarily the solution $f^*(x)$ to (1) must satisfy

$$f^*(x) = \sum_{j=1}^n \alpha_j K(x, x_i), \quad \forall x \in X,$$

for some coefficients α_i .

(d) We are now looking for a regression function $f \in \mathcal{H}$ which minimizes the penalized sum of squares

$$C(f) = \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda ||f||_{\mathcal{H}}^2$$

It directly follows from question (c) that the solution can be written $f^*(x) = \sum_{i=1}^n \alpha_i K(x, x_i)$.

(i) Show that the problem of solving $f^* = \arg \min C(f)$ is equivalent to

$$\alpha^* = \arg\min_{\alpha} (y - K\alpha)^t (y - K\alpha) + \lambda \alpha^t K\alpha \,,$$

where $\alpha^t = (\alpha_1, \ldots, \alpha_n)$, $y^t = (y_1, \ldots, y_n)$, and some matrix K whose entries you will derive.

- (ii) Derive the optimal solution α^* to the problem derived in (d).
- (e) Consider now the problem of binary classification, with $y_i \in \{-1, 1\}$. Which loss ℓ and penalty Ω would you use to turn (1) into a kernel SVM problem? Derive the primal and dual optimisation problem of the kernel SVM, and give an expression for the final classifier.

Problem 1.

- (i) Take some $X \subset \mathbb{R}^p$. Show that for $f : X \to \mathbb{R}$, the function K(x,y) = f(x)f(y) is a valid kernel.
- (ii) Put $X = [-2, 2]^2$, and consider the set of functions on [-2, 2] defined by the kernel $\mathcal{K}(x, y) = 1 + xy \exp(x + y)$.
 - (a) Argue that \mathcal{K} is a legitimate kernel function.
 - (b) Show that g(x) = 1 and $h(x) = x \exp(x)$ both belong to the RKHS \mathcal{H} with kernel \mathcal{K} .
 - (c) Determine whether or not g and h are orthonormal. If they are not, find an orthonormal basis for the span of $\{g, h\}$ in the RKHS with kernel \mathcal{K} .

Problem 2.

We consider real functions on the compact interval $X = [-\pi, \pi]$ with periodic boundary conditions. A Fourier series expansion yields the representation

$$f(x) = \sum_{l=-\infty}^{+\infty} f_l e^{ilx} = \sum_{l=-\infty}^{+\infty} f_l \psi_l(x) \,.$$

where we put $\psi_l(x) := \exp(ilx)$, Since f(x) is real, the Fourier coefficients satisfy $f_{-l} = \bar{f}_l$, where \bar{z} denotes the complex conjugate of z. Consider a Kernel which takes a single argument corresponding to the difference of the inputs, $\mathcal{K}(x,y) = K(x-y)$, with Fourier representation,

$$K(x) = \sum_{l=-\infty}^{+\infty} k_l \,\psi_l(x) \,, \tag{2}$$

where the coefficients satisfy $k_{-l} = k_l$ and $\bar{k}_l = k_l$, assuming K to be a symmetric real function. Let \mathcal{H} be the set of functions of the form

$$\mathcal{H} = \left\{ f: X \to \mathbb{R} \mid f(x) = \sum_{l} f_{l} \psi_{l}(x) \right\} \,,$$

endowed with the dot product

$$\langle f, g \rangle_{\mathcal{H}} := \sum_{l} \frac{f_l \, \bar{g}_l}{k_l} \,.$$
(3)

It can be shown that \mathcal{H} is an RKHS associated with \mathcal{K} , provided $||f||_{\mathcal{H}} < \infty$, where $|| \cdot ||_{\mathcal{H}}$ is the norm induced by the dot product.

(i) Verify that the reproducibility property for f holds,

$$f(x) = \langle f, \mathcal{K}(\cdot, x) \rangle_{\mathcal{H}},$$

(ii) Check that the reproducibility property holds as well for the kernel itself,

$$\langle \mathcal{K}(\cdot, x), \, \mathcal{K}(\cdot, y) \rangle_{\mathcal{H}} = \mathcal{K}(x, y) \,.$$

- (iii) You decide to perform a kernel ridge regression with the kernel (2).
 - (a) Write down the penalized sum of squares objective function you want to minimize.
 - (b) Using the representer theorem, provide a general expression of the minimizer.
 - (c) Using the definition of the dot product (3), explain why the penalty term derived in question (*ii*)(a) favours smooth solutions.

Problem 3. Gaussian and Laplace kernels

(i) Consider the Gaussian kernel on $X = \mathbb{R}$,

$$\mathcal{K}(x,y) = K(x-y) = \exp\left(-\frac{1}{2}(x-y)^2\right) \,.$$

We define an RKHS with inner product

$$\langle f,g \rangle_{\mathcal{H}} = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \frac{\hat{f}(\omega)\overline{\hat{g}(\omega)}}{\hat{\kappa}(\omega)} d\omega$$

where \hat{f} denotes the Fourier transform of f,

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-i\omega x} dx$$
, and $f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{f}(\omega) e^{i\omega x} d\omega$.

Given a function $f(x) = \exp(-ax^2) \in \mathcal{H}$, with a > 0, what is the minimum a for which $||f||_{\mathcal{H}} < \infty$?

Hint: You may use the known results that $e^{-x^2/2}$ has Fourier transform $e^{-\omega^2/2}$, and that f(ax) has Fourier transform $a\hat{f}(\omega/a)$.

(ii) Define the Laplace kernel on \mathbb{R} ,

$$\mathcal{K}(x,y) = K(x-y) = \exp\left(-\frac{1}{2}|x-y|\right),$$

with Fourier transform

$$\hat{\kappa}(\omega) = \frac{2}{1+\omega^2}$$

Given the inner product in question (i), comment on the smoothing penalty enforced by the RKHS norm $||f||_{\mathcal{H}}$ for the Gaussian kernel, versus that with the Laplace kernel.

Problem 4. Kernel SVM

Consider a binary classification problem, with the following training dataset, with input variable $x \in \mathbb{R}$,

	x_i	1	2	3	5
Γ	y_i	1	-1	1	-1

- (i) Is there a linear classifier based only on x with zero training error?
- (ii) Is there a kernel SVM classifier based on the kernel $\mathcal{K}(x, y) = (1 + xy)^2$ with zero training error?
- (iii) Is there a kernel SVM classifier based on the kernel $\mathcal{K}(x,y) = \exp(-2(x-y)^2)$ with zero training error?

Problem 5. Consider the space of functions

 $\mathcal{H} := \{ f : [0, 1] \to \mathbb{R} \mid \text{absolutely continuous}, f(0) = 0, f' \in L_2[0, 1] \},\$

where $L_2[0,1]$ denotes the space of square integrable functions on the interval [0,1]. The space \mathcal{H} is endowed with the bilinear form

$$\langle f,g \rangle_{\mathcal{H}} := \int_0^1 f'(x)g'(x)dx \,.$$

Show that \mathcal{H} is an RKHS with reproducing kernel $K(x, y) = \min(x, y)$.

You do not need to show that \mathcal{H} is complete, but you need to show everything else; in particular that the bilinear form $\langle f, g \rangle_{\mathcal{H}}$ is an inner product on \mathcal{H} .

Problem 6. Let \mathcal{H} be an RKHS with reproducing kernel K. Solve the kernel logistic regression problem

$$\min_{f \in \mathcal{H}} \sum_{i=1}^{n} \log \left(1 + e^{-y_i f(x_i)} \right) + \frac{\lambda}{2} ||f||_{\mathcal{H}}^2$$

using a Newton procedure. Show that each iteration of the algorithm corresponds to a new weighted kernel ridge regression problem, that you will make explicit.