
UL: Clustering

Problem 1. K-means and Gaussian Mixture Model
The Gaussian mixture model can be written as the superposition of Gaussians in the form

p(xi) =
K∑
k=1

pk φ(xi | µk,Σk) ,

where φ is the normal density with mean µk and covariance matrix Σk, and pk the probability
that the i-th observation xi belongs to class k.

(i) Derive the EM algorithm for the Gaussian mixture model.

The K-means algorithm partitions the dataset into K clusters, where K is supposed fixed in
advance. For each datapoint xi, we assign a binary variable πik describing which cluster the
variable belongs to,

πik =

{
1 if xi belongs to cluster k

0 otherwise.

The goal is to select π := {πik} and K centers zk such that

C(z1, . . . , zK , π) =
K∑
k=1

n∑
i=1

πik ||xi − zk||2

is minimized.

(ii) Show that this can be achieved using a two-step iterative procedure, where

Step (a) Assign xi to the nearest µk

Step (b) Update µk using

µk =

∑
i πik xi∑
i πik

.

(iii) Consider a Gaussian mixture model with covariance matrices given by ε I, where ε is a
variance parameter shared by all components. Show that in the limit ε → 0, the EM
re-estimation for the Gaussian means µk reduces to the K-mean result. Then show that
in this limit, maximising the expected complete log-likelihood is equivalent to minimising
C(z1, . . . , zK , π).

Problem 2. EM algorithm for binomial count data
Consider a set of n observations Ln = {x1, . . . , xn}, where each xi ∈ {0, 1, 2, . . .}. Assume that
observation xi belongs to category k with probability πk, with k = 1, . . . , K, and that given xi
belongs to category k,

xi ∼ Bi(ni, pk) .

We do not know the category label of each observation, but we assume that the ni are known.
Write down the EM algorithm estimating the parameters π1, . . . , πK , p1, . . . , pK .

1



UL: Clustering

Problem 3. EM algorithm for censored data
Suppose that x1, . . . , xn are independent truncated observations of a normally distributed random
variable. Specifically, each xi is a realisation of a generic X, where

X = min(X∗, a) , and X∗ ∼ N (θ, 1) .

We suppose a > 0 known, and we wish to estimate θ based solely on observations x1, . . . , xn.
We denote by x∗1, . . . , x

∗
n the associated partially observed variables.

(i) To simplify notation, denote the first m ≤ n observations x1 = x∗1, . . . , xm = x∗m as uncen-
sored, and the remaining (n −m) as censored. The censored observations are treated as
latent variables. We denote them by zm+1 = x∗m+1, . . . , zn = x∗n (instead of zm+1, . . . , zn,
you observe n − m times the value a, as xm+1 = . . . = xn = a). Ignoring constants
independent of θ, show that the complete log-likelihood can be written

`(θ|x1, . . . , xm, zm+1, . . . , zn) = −1

2

m∑
i=1

(xi − θ)2 −
1

2

n∑
i=m+1

(zi − θ)2 .

(ii) Deduce from (i) the expression of the likelihood,

f(θ|x1 . . . , xn) =
1

(2π)m/2
exp

{
−1

2

m∑
i=1

(xi − θ)2
}

(1− Φ(a− θ))n−m .

(iii) Show that the latent variables zi, for i = m+ 1, . . . , n, have conditional density

k(zi|Xi = a, θ) =
ϕ(zi − θ)

1− Φ(a− θ)
, a ≤ zi ,

and zero elsewhere, where ϕ and Φ denote the standard normal density and distribution,
respectively.

(iv) We compute the E-step of the EM algorithm. Show that

E(Z|θ(m)) = θ(m) +
ϕ(a− θ(m))

1− Φ(a− θ(m))
,

and write down the expression of Q(θ, θ(m)).

(v) Show that the M-step returns the following update

θ(m+1) =
m

n
x̄+

n−m
n

(
θ(m) +

ϕ(a− θ(m))

1− Φ(a− θ(m))

)
,

where x̄ = m−1
∑m

i=1 xi.
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