UL: Clustering

Problem 1. K-means and Gaussian Mixture Model
The Gaussian mixture model can be written as the superposition of Gaussians in the form

K
PO = pr (X | e, S
k=1

where ¢ is the normal density with mean p; and covariance matrix X, and p; the probability
that the i-th observation x; belongs to class k.

(i) Derive the EM algorithm for the Gaussian mixture model.

The K-means algorithm partitions the dataset into K clusters, where K is supposed fixed in
advance. For each datapoint x;, we assign a binary variable 7;; describing which cluster the
variable belongs to,

1 if x; belongs to cluster k
Tik —
. 0  otherwise.

The goal is to select m := {m;,} and K centers z; such that

K n
C(Zlv"'7ZK77T) - ZZ 7T1k‘||XZ _ZkH2

k=1 i=1
is minimized.
(ii) Show that this can be achieved using a two-step iterative procedure, where

Step (a) Assign x; to the nearest i

Step (b) Update ju, using
Zi Tik X
py = S5
> i Tik

(iii) Consider a Gaussian mixture model with covariance matrices given by €I, where € is a
variance parameter shared by all components. Show that in the limit ¢ — 0, the EM
re-estimation for the Gaussian means ;. reduces to the K-mean result. Then show that
in this limit, maximising the expected complete log-likelihood is equivalent to minimising
C(z1y. .., 2K,T).

Problem 2. EM algorithm for binomial count data
Consider a set of n observations £,, = {z1,...,z,}, where each x; € {0,1,2,...}. Assume that
observation x; belongs to category k with probability 7y, with k = 1,..., K, and that given z;
belongs to category k,

zi ~ Bi(ni, pr) .

We do not know the category label of each observation, but we assume that the n; are known.
Write down the EM algorithm estimating the parameters my, ..., 7, D1, .-, PK-
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Problem 3. EM algorithm for censored data
Suppose that 1, ..., x, are independent truncated observations of a normally distributed random
variable. Specifically, each z; is a realisation of a generic X, where

X =min(X*, a), and X" ~N(0,1).

We suppose a > 0 known, and we wish to estimate # based solely on observations x1, ..., x,.
We denote by z7, ...,z the associated partially observed variables.

(i) To simplify notation, denote the first m < n observations z1 = x7%, ..., z,, = z¥ as uncen-
sored, and the remaining (n — m) as censored. The censored observations are treated as
latent variables. We denote them by 2,11 = 2, 1,..., 2, = x}, (instead of 2,41, .., 2y,
you observe n — m times the value a, as ;41 = ... = z, = a). Ignoring constants
independent of 6, show that the complete log-likelihood can be written

n

Z}m—ey—% S (5 —0).

i=m-+1

N | —

0O|x1, .o Ty Zig 1y - -+ s 2n) = —

(ii) Deduce from (i) the expression of the likelihood,

fOlzy ... x,) = Wexp {—% Z(wz - 9)2} (1—®(a—0)"™.

i=1
(iii) Show that the latent variables z;, for i = m + 1,...,n, have conditional density
o(z —0)
kE(z| X =a,0) = ————, < z,
(z] a, ) = 3(a—0) a<z

and zero elsewhere, where ¢ and ® denote the standard normal density and distribution,
respectively.

(iv) We compute the E-step of the EM algorithm. Show that

p(a—6m)

E(Z160™Y = gm)
(Z19) T 0l — gy

and write down the expression of Q(6,6(™)).

(v) Show that the M-step returns the following update

— — g(m))
gim+1) — Mo VTN Aam) p(a
T T d gy )

where 7 =m™' """ ;.



