
UL: Principal Component Analysis

Problem 1. Eigenvalues and eigenvectors of a symmetric matrix. Show that the eigenvalues of
a symmetric matrix with real coefficients are real. In addition, show that the eigenvectors can be
chosen orthonormal.

Problem 2. Finding principal components. Let Σ be a d× d symmetric positive definite matrix
with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd > 0, and associated eigenvectors u1, . . . , ud.

(i) Show that

max
x 6=0

xtΣx

xtx
= λ1 , attained at x = u1 ,

and

min
x 6=0

xtΣx

xtx
= λd , attained at x = ud .

(ii) Similarly, show that

max
x⊥u1,...,u`

xtΣx

xtx
= λ`+1 , attained at x = u`+1 .

(iii) Deduce from (i) and (ii) that the `-th principal component of a random vector X ∈ Rd

with covariance matrix Σ corresponds to the eigenvector u` associated with the `-th largest
eigenvalue λ` of Σ. In addition, show that the variance of the projection ut`X on the `-th
principal component is λ`, and that the projections of X onto the principal components
are uncorrelated with each other.

(iv) Based on (iii), how would you estimate the principal components in practice, based on a
random sample {x1, . . . , xn} of size n?

Problem 3. Large Sample Properties. Assume that X1, . . . , Xn ∈ Rd are independent multi-
variate normal random variables, with mean zero and covariance matrix Σ. The eigenvalues of Σ
are all assumed distinct and such that λ1 > λ2 > . . . > λd > 0. Put

X =

 X t
1

...
X t

n

 ∈ Rn×d .

Denote by S = X tX/n the sample covariance matrix of X, with eigenvalue-eigenvector pairs
(λ̂i, êi). Let Λ be the diagonal matrix with elements λ1 > λ2 > . . . > λd > 0. Put λ̂ =
(λ̂1, . . . , λ̂d) and λ = (λ1, . . . , λd). Then

√
n(λ̂− λ)→ N (0, 2Λ2) , as n→∞ .

Deduce an approximate confidence interval for λi with nominal coverage (1 − α), assuming n
large enough.
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UL: Principal Component Analysis

Problem 4. pPCA. The probabilistic PCA model assumes that x ∈ Rd is such that

x = Wz + µ+ ε , (1)

where W ∈ Rd×r, z ∈ Rr, with z ∼ N (0, Ir) and ε ∼ N (0, σ2Id), independent.

(i) Explain why the covariance matrix of ε is taken to be diagonal.

(ii) Show that x ∼ N (µ,C), with C = WWt + σ2Id ∈ Rd×d.

(iii) Show that the posterior distribution z|x ∼ N (M−1Wt(x−µ), σ2M−1), with M = WtW+
σ2Ir ∈ Rr×r.

(iv) Write down the expression of the log-likelihood L of a sample x1, . . . , xn of size n, in terms
of C and

S̃ =
1

n

n∑
i=1

(xi − µ)(xi − µ)t .

(v) Show that the maximum likelihood of µ is x̄ = 1
n

∑
i xi. In the remainder, the covariance

matrix defined is question (iii) is replaced by the sample covariance matrix S, obtained by
plugging in x̄ instead of µ in the expression of S̃.

(vi) Show that the derivative of L with respect to W is given by

∂L
∂W

= n(C−1SCW −C−1W) .

The maximum of the log-likelihood function can be written

WML = Ur(Kr − σ2
MLI)1/2R ,

where Ur is a (d × r) matrix comprising r eigenvectors of the covariance matrix S associated
with its largest r eigenvalues λ1 ≥ . . . ≥ λr, Kr = diag(λ1, . . . , λr), and R is an arbitrary
(orthogonal) rotation matrix. In addition,

σ2
ML =

1

d− r

d∑
j=r+1

λj .

(vii) For applications, such as visualisation or data compression, you need to reverse the mapping
from the latent space into the data space, given by (1). Explain how you would do that.

(viii) Explain then how you would reconstruct the data from the latent variable. Then show that
in the limit σ2 → 0, we recover the standard PCA model.
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Problem 5. pPCA with no reduction of dimensionality. Consider the model (1) with r = d,
corresponding to the case of no reduction of dimensionality. Compute in this case the maximum
likelihood estimator of the covariance matrix C of x, and show that you obtain the MLE of the
covariance matrix for an unconstrained multivariate Gaussian distribution.

Problem 6. Factor Analysis. Factor Analysis assumes that observations x1, . . . , xn are generated
from

xi = Wzi + µ+ εi ,

where W ∈ Rd×r, z ∈ Rr, with z ∼ N (0, Ir) and ε ∼ N (0,Ψ), independent, where Ψ is a d×d
diagonal matrix.

(i) Derive the marginal distribution of xi under this model, as we as the conditional distributions
of xi given zi, and of zi given xi.

(ii) Show that the maximum likelihood estimate of µ is given by the sample mean of the xis.

(iii) Show that the complete log-likelihood Lc can be written

Lc = −1

2

n∑
i=1

{
log |Ψ| − 2ztiW

t(xi − µ) + Tr(ziz
t
iW

tΨ−1W)
}
− n

2
Tr(Ψ−1S) ,

where S is the sample covariance matrix.

(iv) E-step. Show that the conditional mean of the latent variables zi and ziz
t
i given xi and the

current model estimates W,Ψ are

〈zi〉 = GWtψ−1(x− µ)

〈zizti〉 = G + 〈zi〉〈zti〉 ,

where G = (I + WtΨ−1W)−1.

(v) M-step. Show that maximisation of the expected conditional complete log-likelihood with
respect to W yields the update

W̃ =

(
n∑

i=1

(xi − µ)〈zti〉

)(
n∑

i=1

〈zizti〉

)−1
.

(vi) M-step. Show that maximisation of the expected conditional complete log-likelihood with
respect to Ψ−1 yields the update

Ψ̃ = diag

[
S− 1

n

(
n∑

i=1

(xi − µ)〈zti〉

)
W̃t

]
.
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