Problem 0. The Smoothing Spline Problem

Let f be a natural cubic spline defined on the interval [a, b], interpolating values y_1, \ldots, y_n at the n knots x_1, \ldots, x_n , where $a < x_1 < \ldots < x_n < b$. Let \tilde{f} be any continuous twice differentiable function on [a, b] such that $\tilde{f}(x_i) = y_i$ for $i = 1, \ldots, n$. Put $h = \tilde{f} - f$.

(i) Show that

$$\int_a^b f''(x)h''(x)dx = 0.$$

(ii) Deduce that

$$\int_{a}^{b} |\tilde{f}''(x)|^{2} dx \ge \int_{a}^{b} |f''(x)|^{2} dx \,.$$

- (iii) When does equality hold in (ii)? Conclude that the natural cubic spline has the minimum value of $\int |f''(x)|^2 dx$ amongst all smooth curves that interpolate the data $\mathcal{L}_n = \{(x_1, y_1), \dots, (x_\ell, y_\ell)\}.$
- (iv) Recall the smoothing spline optimisation problem.
- (v) Argue that the solution to the smoothing spline problem in (iv) is necessarily a natural cubic spline.

Problem 1. Basis Function for Natural Cubic Splines

Consider a cubic splines f with K interior knots x_1, \ldots, x_K ,

$$f(x) = \sum_{j=0}^{3} \beta_j x^j + \sum_{k=1}^{K} \lambda_k (x - x_k)_+^3,$$

where $(x)_{+} := \max(0, x)$.

(i) Prove that the natural boundary conditions for natural cubic splines imply the following linear constraints on the coefficient:

$$\beta_2 = 0, \qquad \beta_3 = 0, \qquad \sum_{k=1}^K \lambda_k = 0, \qquad \sum_{k=1}^K x_k \lambda_k = 0.$$

(ii) Using (i), derive the basis function

$$g_1(x) = 1$$
, $g_2(x) = x$, $g_{k+2}(x) = d_k(x) - d_{K-1}(x)$, (1)

where

$$d_k(x) = \frac{(x - x_k)_+^3 - (x - x_K)_+^3}{x_K - x_k}$$

for k = 1, ..., K - 2.

Problem 2.

Making use of the basis function (1), the solution to the smoothing spline problem for a training set of size n can be written

$$f(x) = \sum_{j=1}^{n} \beta_j f_j(x)$$

Let $\beta := (\beta_1, \ldots, \beta_n)^t$.

(i) Given a training sample $\mathcal{L}_n = \{(x_1, y_1), \dots, (x_\ell, y_\ell)\}$, show that the penalised criteria

$$RSS(f,\lambda) = \sum_{j=1}^{n} (y_j - f(x_j))^2 + \lambda \int |f''(x)|^2 dx$$

can be rewritten in matrix form

$$RSS(eta, \lambda) = ||y - \mathbf{W}\beta||^2 + \lambda \beta^t \, \mathbf{\Lambda} \, \beta \, ,$$

for $y:=(y_1,\ldots,y_n)^t$, and for some matrices ${f W}$ and ${f \Lambda}$ that you will make explicit.

(ii) Solve the optimisation problem

$$\hat{\beta} = \arg\min_{\beta} RSS(\beta, \lambda)$$

and show that the estimate $\hat{y} := \mathbf{W}\hat{\beta}$ can be written $\hat{y} = S_{\lambda}y$, where S_{λ} can be put into the Reinsch form $(I + \lambda \mathbf{K})^{-1}$.

Problem 3. Smoothing Splines with tie values

- (i) We fit a model $f_{\beta}(x)$ parametrised by β to the learning sample $\mathcal{L}_n = \{(x_1, y_1), \dots, (x_{\ell}, y_{\ell})\}$, using least squares. Show that if there are observations with tied or identical values of x, then the fit can be obtained from a reduced weighted least squares problem.
- (ii) Characterize the solution to the following problem

$$\min_{f} \left\{ \sum_{i=1}^{n} \omega_{i} (y_{i} - f(x_{i}))^{2} + \lambda \int_{a}^{b} |g''(x)|^{2} dx \right\} ,$$

where the $\omega_i \geq 0$ are observation weights.

(iii) Deduce from (i) and (ii) the solution to the smoothing spline problem when the data have ties in x.

Problem 4. Strictly Diagonally Dominant Matrices

Show that a square strictly diagonally dominant matrix is invertible.