
SL: Support Vector Machine

Problem 0.
Consider a two-class classification problem. The training data is Ln = {(x1, y1), . . . , (xn, yn)},
where each yi ∈ {−1, 1} and xi ∈ Rd. We consider classification made using linear models of the
form f(x) = β0 + βtx: classify x as +1 if f(x) is positive, and as −1 otherwise. We assume for
now that the data is linearly separable. The SVM maximum margin classifier choses the decision
boundary for which the margin is maximized: among all separating hyperplanes, it returns the
one that makes the biggest gap (or margin M) between the two classes

maximize β0,β M

subject to

p∑
i=1

β2
i = 1 (1)

yi(β0 + βtxi) ≥M , i = 1, . . . , n

(a) Show that the optimisation problem (1) can be reexpressed as

minimize β0,β
1

2
||β||2

subject to yi(β0 + βtxi) ≥ 1 , i = 1, . . . , n . (2)

(b) Write down the Lagrangian of problem (2).

(c) State the KKT conditions as they apply to this problem.

(d) Derive the dual problem of (2).

(e) Does strong duality hold? Explain why/why not.

(f) Using complementary slackness, find which points in the training data contribute to the
optimal solution (that is, find the support vectors). Express the optimal β in terms of the
training data points and the optimal Lagrange multipliers.

(g) Suggest an expression for the optimal intercept β0.

(h) How would the expression of the dual problem derived in (d) change if you decided to use
a kernel SVM approach?

(i) Derive an expression of the margin in terms of the optimal values of the Lagrange multipliers.

(j) Suppose that the data is linearly non-separable. Introducing slack variables, suggest a mod-
ification to the optimization problem (2) that allow some training points to be misclassified.
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SL: Support Vector Machine

Problem 1.

(i) Derive the Lagrange dual problem of a linear program in the inequality form

minimize ctx

subject to Ax � b .

(ii) Verify that the Lagrange dual of the dual is equivalent to the primal problem.

(iii) When does strong duality hold?

Problem 2.
Consider the following optimization problem in R2

minimize J(x, y) = x+ y

subject to g1(x, y) = (x− 1)2 + y2 − 1 ≤ 0

g2(x, y) = (x+ 4)2 + (y + 3)2 − 25 ≤ 0

(i) Show that the feasible set is convex and sketch it.

(ii) Derive the KKT conditions for this problem, and deduce the solution(s) to the problem.

Problem 3.
Let X be a discrete random variable such that P(X = j) = pj, and let A = (Aij), where
Aij = fi(j), for i = 1, . . . ,m and j = 1, . . . , n. We want to find the distribution p = (pi) with
maximum entropy (the closest to the uniform distribution), under the constraint E(fi(X)) ≤ bi,
for i = 1, . . . ,m,

minimize
n∑
i=1

pi log(pi)

subject to Ap � b

1tp = 1

(i) Show that the dual problem simplifies to

maximize − btλ− log

(
n∑
i=1

e−a
t
iλ

)
subject to λ � 0 ,

where ai is the i-th column of A.

(ii) Under which condition(s) is the optimal gap zero?
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SL: Support Vector Machine

Problem 4.
In a Boolean linear program, the variable x is constrained to have components equal to 0 or 1,

minimize ctx

subject to Ax � b

xi ∈ {0, 1} , i = 1, . . . , n .

Although the feasible set is finite, this optimization problem is in general difficult to solve. We
refer this problem to as the Boolean LP. We investigate two methods to obtain a lower bound
on the optimal solution.

In the first method, called relaxation, the constraint that xi is 0 or 1 is replaced with the linear
inequalities 0 ≤ xi ≤ 1,

minimize ctx

subject to Ax � b

0 ≤ xi ≤ 1 , i = 1, . . . , n .

We refer to this problem as the LP relaxation. This problem is by far easier to solve than the
original problem.

(i) Show that the optimal value of the LP relaxation is a lower bound on the optimal value of
the Boolean LP.

(ii) What can you say about the Boolean LP if the LP relaxation is infeasible?

The Boolean LP can be reformulated as

minimize ctx

subject to Ax � b (3)

xi(1− xi) = 0 , i = 1, . . . , n ,

which has quadratic equality constraints.

(iii) Find the Lagrange dual function of problem (3), and show that the dual problem can be
written

maximize − btλ+
n∑
i=1

min{0, ci + ati λ}

subject to λ � 0 ,

where ai represents the i-th column of A.

(iv) The optimal value of the dual of problem (3) provides a lower bound on the optimal value
of the Boolean LP. This method of finding a lower bound is called Lagrangian relaxation.
Show that the lower bound obtained using Lagrangian relaxation is the same as the lower
bound obtained using LP relaxation.
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SL: Support Vector Machine

Problem 5.
We extend SVM to regression problems. In regularised linear regression, the error function is
given by

n∑
i=1

(yi − f(xi))2 + λ||β||2 , where f(xi) = β0 + xti β .

The quadratic error function is replaced with an error function which gives zero error if |yi−f(xi)|
is less than some ε > 0, and a linear penalty otherwise,

Eε(yi − f(xi)) =

{
0 if |yi − f(xi)| < ε

|yi − f(xi)| − ε otherwise .

The problem is now to minimise the following regularised error function

C
n∑
i=1

Eε(yi − f(xi)) +
1

2
||β||2 , where f(xi) = β0 + xti β ,

with C > 0 some regularisation parameter. For each observation xi, we introduce two slack
variables ξi ≥ 0 and ξ̂i ≥ 0, where ξi > 0 corresponds to a point for which yi > f(xi) + ε, and
ξ̂i > 0 to a point for which yi < f(xi)− ε

(i) Show that the error function to minimise for support vector regression can be reexpressed
as

C
n∑
i=1

(ξi + ξ̂i) +
1

2
||β||2 ,

subject to ξi ≥ 0, ξ̂i ≥ 0, yi ≤ f(xi) + ε+ ξi and yi ≥ f(xi)− ε− ξ̂i.

(ii) Write down the expression of the Lagrangian function, and the associated KKT conditions.

(iii) Write down the dual optimisation problem.

(iv) Express the optimal solution f ∗(xi) for the optimal vector of coefficients β∗. You do not
need to return an expression for the optimal intercept β∗

0 at this stage.

(v) Provide a detailed analysis of the solution: which points have Lagrange multipliers strictly
positive? equal to zero? equal to C? Which points are support vectors?

(vi) Suggest an expression for the optimal intercept β∗
0 .
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