
SL: Ridge Regression and Lasso

In this problem sheet, we consider the problem of linear regression with d predictors and one
intercept,

y = β0 + Xβ + ε ,

where yt = (y1, . . . , yn) is the column vector of target values, βt = (β1, . . . , βd) is the column
vector of coefficients excluding the intercept, εt = (ε1, . . . , εn) is the vector of random errors,
and X is the n× d matrix of (standardised) observations given by

X =


x11 . . . x1d
x21 . . . x2d

...
...

xn1 . . . xnd

 .

We are looking for the solution minimising the penalised sum of squares

RSSp(λ) = (y −Xβ)t(y −Xβ) + λ||β||pp , (1)

where λ > 0, and p = 1 (lasso), p = 2 (ridge regression), etc.

Problem 0.

(i) Consider the ridge regression problem,

β̂ridge = arg min
β


n∑
i=1

(
yi − β0 −

d∑
j=1

xijβj

)2

+ λ
d∑
j=1

β2
j

 .

Show that this problem is equivalent to the problem

β̂sridge = arg min
βs


n∑
i=1

(
yi − βs0 −

d∑
j=1

(xij − x̄j)βsj

)2

+ λ
d∑
j=1

(βsj )
2

 .

Give the correspondence between βs and the original β. Characterise the solution to this
modified criterion, and explain why the intercept does not appear in the expression of the
RSS(λ) given in (1).

(ii) Show that the vector β minimising (1) is β̂λ = (XtX + λId)
−1Xty. Argue why the matrix

XtX + λId is always positive definite, irrespectively of the rank of X.

(iii) Suppose that XtX = Id. Characterise the ridge and lasso solutions in this case, and express
them in terms of the least squares solution. Explain why ridge performs a proportional
shrinkage, while lasso performs soft-thresholding.

(iv) Recall the dimensions and properties of the matrices U, V and Λ in the SVD decomposition
of X = UΛVt, for a n× d matrix of rank d, with d < n.
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(v) The solution to the ridge regression problem is β̂λ = (XtX + λId)
−1Xty, where λ > 0 is

the tuning parameter. Show that the ridge estimate can be written

ŷλ := Xβ̂λ =
d∑
j=1

λ2j
λ2j + λ

< uj,y > uj ,

where the λjs are the diagonal entries of Λ, and uj the columns of U.

(vi) Derive the eigenvalue-eigenvector pairs of XtX.

(vii) Assuming the columns of X are centered, deduce the eigenvalue-eigenvector pairs of the
sample covariance matrix S = XtX/n.

(viii) Deduce a geometrical interpretation of the λj, and a geometrical interpretation of the ridge
estimates. In which directions does ridge regression shrink the coefficients the most?

Problem 1.

(i) Recall the expression of the ridge regression solution β̂λ, minimising the penalised sum of
squares (1).

(ii) Show that β̂λ is a biased estimate of β.

(iii) The ridge fits are given by ŷλ = Xβ̂λ = Hλy. Recall the expression of the matrix Hλ.
Show that Hλ is not a projection matrix for λ > 0.

Hint: Show that Hλ is not idempotent.

(iv) Show that the ridge fits ŷλ are not perpendicular to the ridge residuals ε̂(λ) := y − ŷλ.

Problem 2.
Show that the ridge solution can be re-expressed as a lest square solution of a modified dataset.

Problem 3.
Suppose that X = UΛVt is of rank r ≤ d and put U = [u1, . . . ,ur] and V = [v1, . . . ,vr],
where ui ∈ Rn and vi ∈ Rd.

(i) Put β̂λ = (XtX + λId)
−1Xty =: Aλy. Show that

Aλ =
r∑
j=1

λj
λ2j + λ

vju
t
j .
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(ii) Put P :=
∑r

j=1 vjv
t
j, the projection matrix onto the row space of X. Check that we have

Eβ̂λ =
r∑
j=1

λ2j
λ2j + λ

〈vj, β〉vj ,

and

||β − Eβ̂λ||22 = βt(Id −P)β +
r∑
j=1

(
λ

λ+ λ2j

)2

〈vj, β〉2 .

What is the value of ||β − Eβ̂λ||22 if r = d and λ = 0?

(iii) Check that the total variance varβ̂λ :=
∑d

j=1 var(β̂λ)j is given by

varβ̂λ = σ2Tr(At
λAλ) = σ2

r∑
j=1

(
λj

λ2j + λ

)2

.

(iv) How do the square bias and the variance of β̂λ vary as λ increases?

Problem 4.
The goal of this problem is to understand the ridge and lasso solutions from a Bayesian point of
view. Consider the Gaussian sampling model y | β ∼ N (Xβ, σ2I).

(i) Suppose we put a normal prior distribution on the parameters, β ∼ N (0, τI), for some
τ > 0. Show that the posterior distribution of β given y is normal with mean µ and
covariance matrix Σ, where

Σ−1 =
1

τ
I +

1

σ2
XtX ,

µ =
1

σ2
ΣXty .

Deduce from (i) that the ridge regression estimate is the mean (and mode) of the posterior
distribution. Find the relationship between the regularization parameter λ in the ridge
formula (1), and the variances τ and σ2.

(ii) Consider now a Laplace prior on β, so that the density of β is given by(τ
2

)d
exp (−τ ||β||1) .

Show that the Lasso solution is the MAP (Maximum A Posteriori aka the mode of the
posterior distribution) estimate of β, with λ = 2τσ2.

Problem 5.
Suppose we estimate the regression coefficients in a linear regression model using an `1 penalty,
that is find the minimiser of (1) with p = 1, for a particular value of λ. For questions (a) through
(e), indicate which of (i) through (v) is correct, and justify your answer.
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(a) As we increase λ from 0, the training RSS1(λ) will:

(i) Increase initially, and then eventually start decreasing in an inverted U shape.

(ii) Decrease initially, and then eventually start increasing in a U shape.

(iii) Steadily increase.

(iv) Steadily decrease.

(b) Repeat (a) for test RSS1(λ).

(c) Repeat (a) for variance.

(d) Repeat (a) for squared bias.

Problem 6.
Recall that the lasso estimator β̂λ satisfies (see page 25 of the lecture notes)

XtXβ̂λ = Xty − λ

2
ẑ ,

for ẑ ∈ Rd such that ẑ = sign(β̂λ)j if (β̂λ)j 6= 0 and ẑ ∈ [−1, 1] if (β̂λ)j = 0. Suppose in this
problem that the columns of X are orthogonal.

(i) Argue that for (β̂λ)j 6= 0, Xty and (β̂λ)j are of the same sign.

(ii) Deduce from (i) that in the orthogonal setting the lasso estimator is given by

(β̂λ)j = Xt
jy

(
1− λ

2|Xt
jy|

)
+

.

Compare this expression with the one derived page 11 of the lecture notes.

Problem 7.
The lasso solution is unique when the rank(X) = d. However, when rank(X) < d, the criterion
is not strictly convex, and there can be multiple minimisers of the lasso criterion.

(i) Show that if the lasso solution is not unique, then there exists uncountably many solutions.

(ii) Show that every lasso solution β̂λ gives the same fitted value Xβ̂λ.

(iii) Show that every lasso solution has the same `1 norm ||β̂λ||1.

Problem 8.
The elastic-net optimisation problem can be written as

min
β

{
||y −Xβ||22 + λ(α||β||22 + (1− α)||β||1)

}
,

for some 0 ≤ α ≤ 1.
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(i) Show how it is possible to turn this into a lasso problem, using an augmented version of X
and y. Specify the value of the tuning parameter in terms of λ and α.

(ii) Explain (using words) why an elastic net penalty enables feature selection, as well as coef-
ficient shrinkage.

(iii) Write down a coordinate descent algorithm for the elastic-net optimisation problem.
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