Problem 1.

Let X_1, \ldots, X_n be a random sample from the $\mathcal{N}(\mu, 1)$ distribution. We compare two models,

 $\mathcal{F}_0: \mathcal{N}(0,1), \text{ and } \mathcal{F}_1: \mathcal{N}(\mu,1).$

(i) Test the hypothesis that $\mu = 0$ versus a two-sided alternative. Show that at the 95% confidence level, you reject the null if

$$|\bar{X}| > \frac{1.96}{\sqrt{n}}$$

- (ii) Derive a similar rejection region based on AIC.
- (iii) Derive a similar rejection region based on BIC.

Problem 2.

Consider two datasets, each having k categories, and that the number of observations in each category is given as follows

Category	1	2	 k
dataset 1	n_1	n_2	 n_k
dataset 2	m_1	m_2	 m_k

where the total number of observations are $n_1 + \ldots + n_k = n$ and $m_1 + \ldots + m_k = m$, respectively. We assume that the observations have a multinomial distribution, given by

$$\mathbf{P}(n_1, \dots, n_k) = \frac{n!}{n_1! \dots n_k!} p_1^{n_1} \dots p_k^{n_k},$$
$$\mathbf{P}(m_1, \dots, m_k) = \frac{n!}{m_1! \dots m_k!} q_1^{m_1} \dots q_k^{m_k},$$

where $p_j > 0$ and $q_j > 0$ denote the probabilities that each event in the first and second dataset results in the category j.

- (*i*) Write down the log-likelihood of the model consisting of two individual models for the two datasets (Model I). How many free parameters are there? Derive the AIC for this model.
- (ii) Write down the log-likelihood, if we now assume that the two distributions are equal (Model II). How many free parameters? Derive the AIC for this model.

The following table shows two datasets each having 5 categories.

Category	1	2	3	4	5
Data set 1	304	800	400	57	323
Data set 2	174	509	362	80	214

(iii) Obtain the maximum likelihood estimates of the parameters for Model I and II. Based on the AIC, which model would you pick?

Problem 3. Laplace Approximation Consider the function

$$f(x) = x^{\alpha - 1} e^{-\beta x},$$

where x > 0, $\alpha > 1$ and $\beta > 0$. Find the Laplace approximation to

$$\mathcal{I} = \int_0^\infty f(x) dx \,.$$