
SL: Convex Relaxation

Problem 0.

(i) Give the definition of a soft classifier, and its associated hard classifier.

(ii) Give the definition of a convex surrogate loss function, and give three examples. Plot these
functions on one graph.

(iii) Give a probabilistic meaning of the logistic loss, and then explain why the exponential loss
has no probabilistic meaning.

Problem 1.
Consider the problem of binary classification, with response variable Y ∈ {−1, 1}.

(i) Show that function f ∗ minimising the risk E{ϕ(−Y f(X))|X = x} for the exponential loss
ϕ(z) = ez is given by

f ∗(x) =
1

2
log

(
P(Y = 1|X = x)

P(Y = −1|X = x)

)
.

(ii) Show that the population minimiser derive in question (i) coincides with the population
minimizer associated with the logistic loss ϕ(z) = log(1 + ez), up to a constant.

Problem 2.
Let ϕ be a convex surrogate of the indicator function. For α ∈ R and η ∈ [0, 1], put

Hη(α) := ηϕ(−α) + (1− η)ϕ(α) ,

and
τ(η) := inf

α∈R
Hη(α) .

Zhang’s result states that provided there exists c > 0 and γ ∈ [0, 1] such that for all η ∈ [0, 1],

|η − 1/2| ≤ c (1− τ(η))γ ,

then it is possible to use the excess risk of a soft classifier to bound the excess risk of the
associated hard classifier (see page 7 of the lecture notes).

Show that this condition holds for the hinge loss ϕ(z) = max(z + 1, 0), and give the optimal
values of c and γ in this case.
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