
SL: Trees, Bagging and Random Forests

Problem 0.

(i) Describe the CART algorithm for regression trees. In particular, answer the following
questions:

(a) Using a square loss function, what is the predicted value in each region?

(b) Explain how a greedy algorithm helps us to choose the split variable and the split
point.

(c) Why isn’t it a good idea to grow a very large tree?

(d) What is cost complexity pruning? What is it used for?

(d) What is weakest link pruning?

(ii) Which criteria would you use to grow a classification tree? Give its (their) expression(s)
and discuss how it (they) relate to misclassification error.

Problem 1.
Below is a small classification training set (for 2 classes in R2) displayed in graphical and tabular
forms (circles are class 0 and squares are class 1).

(i) Using empirical misclassification rate as your splitting criterion and standard forward selec-
tion, find a reasonably simple binary tree classifier that has training error rate 0. Carefully
describe it below, using as many nodes as you need.
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At the root node: split on x1/x2 (circle the correct one of these) at the value

Classify to Class 0 if (creating Node #1)

Classify to Class 1 otherwise (creating Node #2)

At node : split on x1/x2 (circle the correct one of these) at the value

Classify to Class 0 if (creating Node #3)

Classify to Class 1 otherwise (creating Node #4)

At node : split on x1/x2 (circle the correct one of these) at the value

Classify to Class 0 if (creating Node #5)

Classify to Class 1 otherwise (creating Node #6)

At node : split on x1/x2 (circle the correct one of these) at the value

Classify to Class 0 if (creating Node #7)

Classify to Class 1 otherwise (creating Node #8)

(ii) Draw in the final set of rectangles corresponding to your binary tree on the graph on the
previous page.

(iii) For every sub-tree T of your full binary tree above, list in the table below the size (number
of leaves |T |) of the sub-tree T , and the training error rate of its associated classifier. We
recall that the training error rate is defined as

E := n−1
|T |∑
m=1

|Rm|Qm(T ) ,

where n denotes the total number of observations, |Rm| the number of observations in the
terminal region Rm and Qm(T ) a measure of impurity, taken as the misclassification error
here.

Full tree pruned at nodes # Pruned tree size |T | E
None (full tree)

(iv) Using the values in your table from (iii), find for every α > 0 a sub-tree of your full tree
minimizing the cost-complexity criterion

Cα(T ) = αE + |T | .

Plot Cα(T ) as a function of α for each sub-tree.
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Problem 2.
Consider the following dataset

x1 x2 x3 y
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

(i) Can we represent this boolean function with a decision tree? In other words, is there a
decision tree with 0 training error on this dataset?

(ii) Give a simple expression of y as a function of x1, x2 and x3.

(ii) Can the CART algorithm find this tree? Explain.

Problem 3. Bagging with linear statistics
Consider the following quote: ”The more linear is an estimator, [...] the less effective bagging will
be. And vice-versa, the more effective bagging proves to be, the less linear is the problem. For
example, estimators derived from linear least squares regression and ridge regression [...] should
not receive much variance reduction through bagging. On the other hand, highly non-linear
methods such as decision trees and neural networks should benefit substantially” in On Bagging
and non-linear estimation, Friedman & Hall (2000). We illustrate this quote on a simple example.

Let Ln := {X1, . . . , Xn} where the Xj are i.i.d. with mean µ and variance σ2. Let X̄∗1 and X̄∗2
be two bootstrap realizations of the sample mean,

X̄∗i =
1

n

n∑
k=1

X∗ik, i = 1, 2 ,

where (X∗ik|Ln) = Xj with probability 1/n, for j, k = 1, . . . , n, and i = 1, 2.

(i) Show that the correlation Corr(X̄∗1 , X̄
∗
2 ) = n/(2n− 1) ≈ 1/2.

(ii) Derive the variance of the bagged mean X̄bag = B−1
∑B

b=1 X̄
∗
b , and show that as B →∞,

this term tends to the variance of X̄.
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