Problem 0.

- (*i*) Describe the CART algorithm for regression trees. In particular, answer the following questions:
 - (a) Using a square loss function, what is the predicted value in each region?
 - (b) Explain how a greedy algorithm helps us to choose the split variable and the split point.
 - (c) Why isn't it a good idea to grow a very large tree?
 - (d) What is cost complexity pruning? What is it used for?
 - (d) What is weakest link pruning?
- (*ii*) Which criteria would you use to grow a classification tree? Give its (their) expression(s) and discuss how it (they) relate to misclassification error.

Problem 1.

Below is a small classification training set (for 2 classes in \mathbb{R}^2) displayed in graphical and tabular forms (circles are class 0 and squares are class 1).

(*i*) Using empirical misclassification rate as your splitting criterion and standard forward selection, find a reasonably simple binary tree classifier that has training error rate 0. Carefully describe it below, using as many nodes as you need.

- At the root node: split on x_1/x_2 (circle the correct one of these) at the value ______ Classify to Class 0 if ______ (creating Node #1) Classify to Class 1 otherwise (creating Node #2)
- At node _____: split on x_1/x_2 (circle the correct one of these) at the value _____ Classify to Class 0 if _____ (creating Node #3) Classify to Class 1 otherwise (creating Node #4)
- At node _____: split on x_1/x_2 (circle the correct one of these) at the value _____ Classify to Class 0 if _____ (creating Node #5) Classify to Class 1 otherwise (creating Node #6)
- At node _____: split on x_1/x_2 (circle the correct one of these) at the value _____ Classify to Class 0 if ______ (creating Node #7) Classify to Class 1 otherwise (creating Node #8)
 - (ii) Draw in the final set of rectangles corresponding to your binary tree on the graph on the previous page.
 - (iii) For every sub-tree T of your full binary tree above, list in the table below the size (number of leaves |T|) of the sub-tree T, and the training error rate of its associated classifier. We recall that the training error rate is defined as

$$E := n^{-1} \sum_{m=1}^{|T|} |R_m| Q_m(T),$$

where n denotes the total number of observations, $|R_m|$ the number of observations in the terminal region R_m and $Q_m(T)$ a measure of impurity, taken as the misclassification error here.

Full tree pruned at nodes $\#$	Pruned tree size $ T $	E
None (full tree)		

(iv) Using the values in your table from (iii), find for every $\alpha > 0$ a sub-tree of your full tree minimizing the cost-complexity criterion

$$C_{\alpha}(T) = \alpha E + |T|.$$

Plot $C_{\alpha}(T)$ as a function of α for each sub-tree.

Problem 2.

Consider the following dataset

x_1	x_2	x_3	y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

- (*i*) Can we represent this boolean function with a decision tree? In other words, is there a decision tree with 0 training error on this dataset?
- (ii) Give a simple expression of y as a function of x_1, x_2 and x_3 .
- (ii) Can the CART algorithm find this tree? Explain.

Problem 3. Bagging with linear statistics

Consider the following quote: "The more linear is an estimator, [...] the less effective bagging will be. And vice-versa, the more effective bagging proves to be, the less linear is the problem. For example, estimators derived from linear least squares regression and ridge regression [...] should not receive much variance reduction through bagging. On the other hand, highly non-linear methods such as decision trees and neural networks should benefit substantially" in *On Bagging and non-linear estimation*, Friedman & Hall (2000). We illustrate this quote on a simple example.

Let $\mathcal{L}_n := \{X_1, \ldots, X_n\}$ where the X_j are i.i.d. with mean μ and variance σ^2 . Let \bar{X}_1^* and \bar{X}_2^* be two bootstrap realizations of the sample mean,

$$\bar{X}_i^* = \frac{1}{n} \sum_{k=1}^n X_{ik}^*, \qquad i = 1, 2,$$

where $(X_{ik}^*|\mathcal{L}_n) = X_j$ with probability 1/n, for $j, k = 1, \ldots, n$, and i = 1, 2.

- (i) Show that the correlation $\operatorname{Corr}(\bar{X}_1^*, \bar{X}_2^*) = n/(2n-1) \approx 1/2.$
- (ii) Derive the variance of the bagged mean $\bar{X}_{bag} = B^{-1} \sum_{b=1}^{B} \bar{X}_{b}^{*}$, and show that as $B \to \infty$, this term tends to the variance of \bar{X} .