
Ridge Regression and Lasso
1. Credit dataset

The data can be downloaded here http://www-bcf.usc.edu/~gareth/ISL/data.html, and imported into R
using the read.csv function. This dataset is used in Chapter 6 in An Introduction to Statistical Learning by
G. James, D. Witten, T. Hastie and R. Tibshirani to illustrate regularization techniques.

The learning sample contains 400 observations, for 10 variables. The response variable is Balance, which gives
the average credit card debt for a number of individuals. The predictors are both quantitative, such as Age,
Cards (number of credit cards), Education (number of years of education), Income (in thousands of dollars),
Limit (credit limit), Rating (credit rating), and qualitative, Gender, Student, Status (marital status) and
Ethnicity (Caucasian, African American or Asian). The variable X denotes the row number, and can be
discarded. At this stage, you should reflect on ethical values of machine learning. Shall we be incorporating
Ethnicity and Gender as predictors? Fairness in machine learning should not be discarded, as it is know
that in many cases a poor use of algorithms or of the data used to train them increase inequalities amongst
people, targeting minorities. I strongly suggest you read the book called Weapons of Maths Destruction by
Cathy O’Neil, and listen to her TED talk https://www.ted.com/talks/cathy_o_neil_the_era_of_blind_
faith_in_big_data_must_end?language=en. While we are discussing this, why not have a look at this talk
as well https://www.ted.com/talks/joy_buolamwini_how_i_m_fighting_bias_in_algorithms.

Credit<-read.csv("Credit.csv")
str(Credit)

'data.frame': 400 obs. of 12 variables:
$ X : int 1 2 3 4 5 6 7 8 9 10 ...
$ Income : num 14.9 106 104.6 148.9 55.9 ...
$ Limit : int 3606 6645 7075 9504 4897 8047 3388 7114 3300 6819 ...
$ Rating : int 283 483 514 681 357 569 259 512 266 491 ...
$ Cards : int 2 3 4 3 2 4 2 2 5 3 ...
$ Age : int 34 82 71 36 68 77 37 87 66 41 ...
$ Education: int 11 15 11 11 16 10 12 9 13 19 ...
$ Gender : Factor w/ 2 levels " Male","Female": 1 2 1 2 1 1 2 1 2 2 ...
$ Student : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 1 1 1 1 2 ...
$ Married : Factor w/ 2 levels "No","Yes": 2 2 1 1 2 1 1 1 1 2 ...
$ Ethnicity: Factor w/ 3 levels "African American",..: 3 2 2 2 3 3 1 2 3 1 ...
$ Balance : int 333 903 580 964 331 1151 203 872 279 1350 ...

A scatter plot for each pair of the quantitative variables can be obtained using the command pairs

pairs(Balance~Age+Cards+Education+Income+Limit+Rating, Credit, col="steelblue3")

1

http://www-bcf.usc.edu/~gareth/ISL/data.html
https://www.ted.com/talks/cathy_o_neil_the_era_of_blind_faith_in_big_data_must_end?language=en
https://www.ted.com/talks/cathy_o_neil_the_era_of_blind_faith_in_big_data_must_end?language=en
https://www.ted.com/talks/joy_buolamwini_how_i_m_fighting_bias_in_algorithms

Balance

20 40 60 80 100 5 10 15 20 2000 8000 14000

0
50

0
15

00

20
40

60
80

10
0

Age

Cards

2
4

6
8

5
10

15
20

Education

Income

50
10

0
15

0

20
00

80
00

14
00

0

Limit

0 500 1500 2 4 6 8 50 100 150 200 600 1000
20

0
60

0
10

00

Rating

We observe the existence of linear dependency amongst some variables, such as Rating and Limit. These
variables should not be included together in a linear model, as it would lead to numerical instabilities, and
unreliable predictions. For example, considering the model consisting of the three variables Age, Rating and
Limit, the value of the VIF for Rating and Limit indicates collinearity. One should drop one of the variables
from the model, or combine them in some way.

library(car)
lm.fit = lm(Balance~Age+Rating+Limit, data=Credit)
summary(lm.fit)

##
Call:
lm(formula = Balance ~ Age + Rating + Limit, data = Credit)
##

2

Residuals:
Min 1Q Median 3Q Max
-729.67 -135.82 -8.58 127.29 827.65
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -259.51752 55.88219 -4.644 4.66e-06 ***
Age -2.34575 0.66861 -3.508 0.000503 ***
Rating 2.31046 0.93953 2.459 0.014352 *
Limit 0.01901 0.06296 0.302 0.762830

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 229.1 on 396 degrees of freedom
Multiple R-squared: 0.7536, Adjusted R-squared: 0.7517
F-statistic: 403.7 on 3 and 396 DF, p-value: < 2.2e-16

vif(lm.fit)

Age Rating Limit
1.011385 160.668301 160.592880

Ridge Regression, the Lasso and relaetd techniques are implemented in the package glmnet

library(glmnet)

Loading required package: Matrix
Loaded glmnet 1.9-8

We use the command model.matrix to automatically converts the qualitative variables into numerical
variables. This is needed for the glmnet function which can only take numerical inputs. We remove
the intercept from the model, see discussion pages 2-4 in lecture notes SL: RIDGE REGRESSION AND
LASSO. Observe that model.matrix created two variables EthnicityAsian and EthnicityCaucasian for
the predictor Ethnicity, containing originally three factors. The factor African American being the base
factor by default. Because of ethical concerns, we drop these predictors from the model. For similar reasons,
we drop as well the variable Gender.

head(model.matrix(Balance~., Credit)) # First Column = Intercept

(Intercept) X Income Limit Rating Cards Age Education GenderFemale
1 1 1 14.891 3606 283 2 34 11 0
2 1 2 106.025 6645 483 3 82 15 1
3 1 3 104.593 7075 514 4 71 11 0
4 1 4 148.924 9504 681 3 36 11 1
5 1 5 55.882 4897 357 2 68 16 0
6 1 6 80.180 8047 569 4 77 10 0
StudentYes MarriedYes EthnicityAsian EthnicityCaucasian
1 0 1 0 1
2 1 1 1 0
3 0 0 1 0
4 0 0 1 0
5 0 1 0 1
6 0 0 0 1

3

train.X = model.matrix(Balance~., Credit)[,-c(1,2,9,12,13)]
train.Y = Credit$Balance
head(train.X)

Income Limit Rating Cards Age Education StudentYes MarriedYes
1 14.891 3606 283 2 34 11 0 1
2 106.025 6645 483 3 82 15 1 1
3 104.593 7075 514 4 71 11 0 0
4 148.924 9504 681 3 36 11 0 0
5 55.882 4897 357 2 68 16 0 1
6 80.180 8047 569 4 77 10 0 0

head(train.Y)

[1] 333 903 580 964 331 1151

We use the command glmnet to train the data using Ridge Regression and Lasso. The entry alpha indicates
which method is used. The value alpha=0 corresponds to ridge regression, and alpha=1 to the lasso. In
between values of alpha correspond to an elastic-net penalty. We estimate the parameters for a range of
values of the tuning parameter λ, ranging from 105 to 10−2.

grid = 10^seq(5, -2, length=100)
ridge.fit = glmnet(train.X, train.Y, alpha=0, lambda=grid)

Note that by default, the function glmnet standardizes variables. Use standardize=FALSE if you do not want
glmnet to standardize.

args(glmnet)

function (x, y, family = c("gaussian", "binomial", "poisson",
"multinomial", "cox", "mgaussian"), weights, offset = NULL,
alpha = 1, nlambda = 100, lambda.min.ratio = ifelse(nobs <
nvars, 0.01, 1e-04), lambda = NULL, standardize = TRUE,
intercept = TRUE, thresh = 1e-07, dfmax = nvars + 1, pmax = min(dfmax *
2 + 20, nvars), exclude, penalty.factor = rep(1, nvars),
lower.limits = -Inf, upper.limits = Inf, maxit = 1e+05, type.gaussian = ifelse(nvars <
500, "covariance", "naive"), type.logistic = c("Newton",
"modified.Newton"), standardize.response = FALSE, type.multinomial = c("ungrouped",
"grouped"))
NULL

For each value of λ, glmnet returns a vector of estimated coefficients, which can be accessed using coef().

dim(coef(ridge.fit))

[1] 9 100

Expect coefficients to be close the the least squares estimates for small values of λ. In addition, as λ increases,
the size of the coefficients are shrinking. Compare the following estimates:

4

grid[20] # Value of lambda

[1] 4534.879

coef(ridge.fit)[,20]

(Intercept) Income Limit Rating Cards
352.62843891 0.42219591 0.01402781 0.20973004 2.56585994
Age Education StudentYes MarriedYes
-0.04388717 -0.06297835 36.45865958 -0.84991432

sqrt(sum(coef(ridge.fit)[-1,20]^2)) # Sum of the squared estimated coefficient

[1] 36.56184

grid[100] # Value of lambda

[1] 0.01

coef(ridge.fit)[,100]

(Intercept) Income Limit Rating Cards
-478.8370871 -7.7901130 0.1785274 1.3168139 16.9765869
Age Education StudentYes MarriedYes
-0.6413354 -1.0399935 424.7658276 -7.6857956

sqrt(sum(coef(ridge.fit)[-1,100]^2)) # Sum of the squared estimated coefficient

[1] 425.2496

lm.fit = lm(train.Y~train.X)
coef(lm.fit) # LS estimate

(Intercept) train.XIncome train.XLimit train.XRating
-473.6511986 -7.7933184 0.1930547 1.1007640
train.XCards train.XAge train.XEducation train.XStudentYes
18.0206890 -0.6385828 -1.0957774 425.4586749
train.XMarriedYes
-7.2149398

We plot the evolution of the value of the coefficients as a function of λ.

plot(grid, coef(ridge.fit)[2,], ylim = c(-8, 2), log="x", type="l",col="darkseagreen3",
xlab= expression(paste(lambda, " (log scale)")),
ylab="ridge regression coefficient estimates") # variable 'income'

lines(grid, coef(ridge.fit)[3,], type="l", col="black") # variable 'limit'
lines(grid, coef(ridge.fit)[4,], type="l", col="steelblue3") # variable 'rating'
lines(grid, coef(ridge.fit)[7,], type="l", col="blue") # variable 'education'
legend(1000, -2, c("income","limit","rating","education"), lty=c(1,1,1,1),

col=c("darkseagreen3","black","steelblue3","blue"))

5

1e−02 1e+00 1e+02 1e+04

−
8

−
6

−
4

−
2

0
2

λ (log scale)

rid
ge

 r
eg

re
ss

io
n

co
ef

fic
ie

nt
 e

st
im

at
es

income
limit
rating
education

Alternatively, as λ increases, the ||.||2 norm of the vector of ridge estimates β̂λ decreases. We can plot the
value of the coefficients as a function of ||β̂λ||22/||β̂||22, where β̂ denotes the LS estimates.

ratiol2 = sqrt(colSums(coef(ridge.fit)[-1,]^2)/sum(coef(lm.fit)[-1]^2))
plot(ratiol2, coef(ridge.fit)[2,], ylim = c(-8, 2), type="l", col="darkseagreen3",

xlab="Shrinkage Factor", ylab="ridge regression coefficient estimates")
lines(ratiol2, coef(ridge.fit)[3,], type="l", col="black")
lines(ratiol2, coef(ridge.fit)[4,], type="l", col="steelblue3")
lines(ratiol2, coef(ridge.fit)[7,], type="l", col="blue")
legend(0.05, -2, c("income","limit","rating","education"), lty=c(1,1,1,1),

col=c("darkseagreen3","black","steelblue3","blue"))

0.0 0.2 0.4 0.6 0.8 1.0

−
8

−
6

−
4

−
2

0
2

Shrinkage Factor

rid
ge

 r
eg

re
ss

io
n

co
ef

fic
ie

nt
 e

st
im

at
es

income
limit
rating
education

We repeat the analysis for the lasso, setting alpha=1 in the command glmnet. We plot a subset of the
coefficient estimates as a function of ||β̂λ||1/||β̂||1, where β̂λ denotes the lasso estimate, and ||.||1 the `1-norm.

grid = 10^seq(5, -3, length=100)
lasso.fit = glmnet(train.X, train.Y, alpha=1, lambda=grid)
ratiol1=sqrt(colSums(abs(coef(ridge.fit)[-1,]))/sum(abs(coef(lm.fit)[-1])))
plot(ratiol1, coef(lasso.fit)[2,], ylim = c(-8, 2), type="l", col="darkseagreen3",

6

xlim=c(.5,1), xlab="Shrinkage Factor", ylab="lasso coefficient estimates")
lines(ratiol1, coef(lasso.fit)[3,], type="l", col="black")
lines(ratiol1, coef(lasso.fit)[4,], type="l", col="steelblue3")
lines(ratiol1, coef(lasso.fit)[7,], type="l", col="blue")
legend(0.1,-4,c("income","limit","rating","cards"), lty=c(1,1,1,1),

col=c("red","black","magenta","blue"))

0.5 0.6 0.7 0.8 0.9 1.0

−
8

−
6

−
4

−
2

0
2

Shrinkage Factor

la
ss

o
co

ef
fic

ie
nt

 e
st

im
at

es

Finally, the coefficients returned by glmnet differ depending on how the input variables are scaled. Consider
the following twho scenarios: (a) use glmnet with manually standardised variables, using standardize=FALSE,
and (b) non manually standardised input variables, and standardize=TRUE in glmnet.

First, use glmnet with standardized inputs
m.X <- colMeans(train.X); n=dim(Credit)[1]
sd.X <- sqrt((1-1/n)*apply(train.X, 2, var)) # Renormalise by n instead of (n-1)
m.X <- matrix(rep(m.X, dim(train.X)[1]), nrow=dim(train.X)[1],

ncol=dim(train.X)[2], byrow=TRUE)
sd.X <- matrix(rep(sd.X, dim(train.X)[1]), nrow=dim(train.X)[1],

ncol=dim(train.X)[2], byrow=TRUE)

Case (a)
ridge.fit1 = glmnet((train.X-m.X)/sd.X, train.Y, alpha=0, lambda=25, standardize=FALSE)
coef(ridge.fit1)

9 x 1 sparse Matrix of class "dgCMatrix"
s0
(Intercept) 520.015000
Income -210.278163
Limit 281.130123
Rating 268.905257
Cards 21.130488
Age -15.295031

7

Education -1.867084
StudentYes 118.674146
MarriedYes -5.156212

Case (b)
ridge.fit2 = glmnet(train.X, train.Y, alpha=0, lambda=25)
coef(ridge.fit2)

9 x 1 sparse Matrix of class "dgCMatrix"
s0
(Intercept) -426.2437625
Income -5.9737792
Limit 0.1219489
Rating 1.7401423
Cards 15.4286724
Age -0.8877888
Education -0.5981754
StudentYes 395.5804858
MarriedYes -10.5838063

You should observe that all coefficient estimates differ in cases (a) and (b). This may seem worrying at first,
as in (a) we manually standardize coefficients, while in (b) we rely on glmnet to do it automatically. This
raises the question of the interpretability of the coefficient estimates returned by glmnet. First, note that the
intercept value in (a) corresponds to the mean value of the response variable.

mean(train.Y)

[1] 520.015

This observation is in agreement with the discussion on page 4 of the lecture notes. It turns out that the
estimate of the intercept of the glmnet function is returned on the original scale, that is the scale on which
you input the training data to the glmnet command. Compare now the coefficient estimate of (a) with
those of (b) properly rescaled, corresponding respectively to β̂sj and β̂j in the notation p.4 of the lecture
notes: coefficients β̂sj correspond to ridge.fit1 while coefficients β̂j correspond to ridge.fit2, and satisfy
β̂0 = β̂s0 −

∑d
j=1 β̂j x̄j , and β̂j = β̂sj/σ̂j , for j = 1, ..., d.

m.X <- colMeans(train.X); sd.X <- sqrt((1-1/n)*apply(train.X, 2, var))
coef(ridge.fit2)[1]

[1] -426.2438

coef(ridge.fit1)[1] - sum(m.X*coef(ridge.fit2)[2:9])

[1] -426.2438

coef(ridge.fit2)[2:9]

[1] -5.9737792 0.1219489 1.7401423 15.4286724 -0.8877888 -0.5981754
[7] 395.5804858 -10.5838063

8

coef(ridge.fit1)[2:9]/sd.X

Income Limit Rating Cards Age Education
-5.9737792 0.1219489 1.7401423 15.4286724 -0.8877888 -0.5981754
StudentYes MarriedYes
395.5804858 -10.5838063

9

	1. Credit dataset

